Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T01:25:35.688Z Has data issue: false hasContentIssue false

Understanding mechanical behavior and reliability of organic electronic materials

Published online by Cambridge University Press:  02 February 2017

Jae-Han Kim
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea; [email protected]
Inhwa Lee
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea; [email protected]
Taek-Soo Kim
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea; [email protected]
Nicholas Rolston
Affiliation:
Department of Applied Physics, Stanford University, USA; [email protected]
Brian L. Watson
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; [email protected]
Reinhold H. Dauskardt
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; [email protected]
Get access

Abstract

The mechanical properties of organic electronic materials and interfaces play a central role in determining the manufacturability and reliability of flexible and stretchable organic electronic devices. The synergistic effects of mechanical stress and deformation, together with other operating parameters such as temperature and temperature cycling, and exposure to solar radiation, moisture, and other environmental species are particularly important for longer-term device stability. We review recent studies of basic mechanical properties such as adhesion and cohesion, stiffness, yield behavior, and ductility of organic semiconducting materials, and their connection to underlying molecular structure. We highlight thin-film metrologies to probe the mechanical behavior, including when subjected to simulated operational conditions. We also report on strategies for improving reliability through interface engineering and tailoring material chemistry and molecular structure. These studies provide insights into how these metrologies and metrics inform the development of materials and devices for improved reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brand, V., Bruner, C., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 99, 182 (2012).CrossRefGoogle Scholar
Dauskardt, R.H., Lane, M., Ma, Q., Krishna, N., Eng. Fract. Mech. 61, 141 (1998).CrossRefGoogle Scholar
Hutchinson, J.W., Suo, Z., Adv. Appl. Mech. 29, 63 (1991).CrossRefGoogle Scholar
Bruner, C., Dauskardt, R., Macromolecules 47, 1117 (2014).CrossRefGoogle Scholar
Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., Van Landingham, M.R., Kim, H.C., Volksen, W., Miller, R.D., Simonyi, E.E., Nat. Mater. 3, 545 (2004).CrossRefGoogle Scholar
O’Connor, B., Chan, E.P., Chan, C., Conrad, B.R., Richter, L.J., Kline, R.J., Heeney, M., McCulloch, I., Soles, C.L., De Longchamp, D.M., ACS Nano 4, 7538 (2010).CrossRefGoogle Scholar
Kim, J.-H., Nizami, A., Hwangbo, Y., Jang, B., Lee, H.-J., Woo, C.-S., Hyun, S., Kim, T.-S., Nat. Commun. 4, 2520 (2013).CrossRefGoogle Scholar
Suo, Z., Prévost, J.H., Liang, J., J. Mech. Phys. Solids 51, 2169 (2003).CrossRefGoogle Scholar
Jørgensen, M., Norrman, K., Krebs, F.C., Sol. Energy Mater. Sol. Cells 92, 686 (2008).CrossRefGoogle Scholar
Dupont, S.R., Oliver, M., Krebs, F.C., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 97, 171 (2012).CrossRefGoogle Scholar
Dupont, S.R., Novoa, F., Voroshazi, E., Dauskardt, R.H., Adv. Funct. Mater. 24, 1325 (2014).CrossRefGoogle Scholar
Balcaen, V., Rolston, N., Dupont, S.R., Voroshazi, E., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 143, 418 (2015).CrossRefGoogle Scholar
Rolston, N., Watson, B.L., Bailie, C.D., McGehee, M.D., Bastos, J.P., Gehlhaar, R., Kim, J.E., Vak, D., Mallajosyula, A.T., Gupta, G., Mohite, A.D., Dauskardt, R.H., Extreme Mech. Lett. 9, 353 (2016).CrossRefGoogle Scholar
Watson, B.L., Rolston, N., Bush, K.A., Leijtens, T., McGehee, M.D., Dauskardt, R.H., ACS Appl. Mater. Interfaces 8, 25896 (2016).CrossRefGoogle Scholar
Dupont, S.R., Voroshazi, E., Nordlund, D., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 132, 443 (2015).CrossRefGoogle Scholar
Awartani, O., Lemanski, B.I., Ro, H.W., Richter, L.J., De Longchamp, D.M., O’Connor, B.T., Adv. Energy Mater. 3, 399 (2013).CrossRefGoogle Scholar
Tank, D., Lee, H.H., Khang, D.Y., Macromolecules 42, 7079 (2009).Google Scholar
Savagatrup, S., Makaram, A.S., Burke, D.J., Lipomi, D.J., Adv. Funct. Mater. 24, 1169 (2014).CrossRefGoogle Scholar
Roth, B., Savagatrup, S., De Los Santos, N.V., Hagemann, O., Carlé, J.E., Helgesen, M., Livi, F., Bundgaard, E., Søndergaard, R.R., Krebs, F.C., Lipomi, D.J., Chem. Mater. 28, 2363 (2016).CrossRefGoogle Scholar
Savagatrup, S., Chan, E., Renteria-Garcia, S.M., Printz, A.D., Zaretski, A.V., O’Connor, T.F., Rodriquez, D., Valle, E., Lipomi, D.J., Adv. Funct. Mater. 25, 427 (2015).CrossRefGoogle Scholar
Lipomi, D.J., Chong, H., Vosgueritchian, M., Mei, J., Bao, Z., Sol. Energy Mater. Sol. Cells 107, 355 (2012).CrossRefGoogle Scholar
Kim, J.S., Kim, J.H., Lee, W., Yu, H., Kim, H.J., Song, I., Shin, M., Oh, J.H., Jeong, U., Kim, T.S., Kim, B.J., Macromolecules 48, 4339 (2015).CrossRefGoogle Scholar
Kim, T., Kim, J.-H., Kang, T.E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T.-S., Kim, B.J., Nat. Commun. 6, 8547 (2015).CrossRefGoogle Scholar
Printz, A.D., Chiang, A.S.C., Savagatrup, S., Lipomi, D.J., Synth. Met. 217, 144 (2016).CrossRefGoogle Scholar
Dupont, S.R., Voroshazi, E., Heremans, P., Dauskardt, R.H., Proc. IEEE Photovolt. Spec. Conf. (2012), pp. 32593262.Google Scholar
Krebs, F.C., Gevorgyan, S.A., Alstrup, J., J. Mater. Chem. 19, 5442 (2009).CrossRefGoogle Scholar
Kook, S.Y., Dauskardt, R.H., J. Appl. Phys. 91, 1293 (2002).CrossRefGoogle Scholar
Lane, M.W., Snodgrass, J.M., Dauskardt, R.H., Microelectron. Reliab. 41, 1615 (2001).CrossRefGoogle Scholar
Cai, C., Miller, D.C., Tappan, I.A., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 157, 346 (2016).CrossRefGoogle Scholar
Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., Fréchet, J.M.J., Adv. Mater. 15, 1519 (2003).CrossRefGoogle Scholar
Zen, A., Saphiannikova, M., Neher, D., Grenzer, J., Grigorian, S., Pietsch, U., Asawapirom, U., Janietz, S., Scherf, U., Lieberwirth, I., Wegner, G., Macromolecules 39, 2162 (2006).CrossRefGoogle Scholar
Koppe, M., Brabec, C.J., Heiml, S., Schausberger, A., Duffy, W., Heeney, M., McCulloch, I., Macromolecules 42, 4661 (2009).CrossRefGoogle Scholar
Ma, W., Kim, J.Y., Lee, K., Heeger, A.J., Macromol. Rapid Commun. 28, 1776 (2007).CrossRefGoogle Scholar
Tummala, N.R., Bruner, C., Risko, C., Brédas, J.L., Dauskardt, R.H., ACS Appl. Mater. Interfaces 7, 9957 (2015).CrossRefGoogle Scholar
Tummala, N.R., Risko, C., Bruner, C., Dauskardt, R.H., Brédas, J.L., J. Polym. Sci. B Polym. Phys. 53, 934 (2015).CrossRefGoogle Scholar
Dupont, S.R., Voroshazi, E., Nordlund, D., Vandewal, K., Dauskardt, R.H., Adv. Mater. Interfaces 1, 1400135 (2014).CrossRefGoogle Scholar
Yun, J.H., Lee, I., Kim, T.-S., Ko, M.J., Kim, J.Y., Son, H.J., J. Mater. Chem. A 3, 22176 (2015).CrossRefGoogle Scholar
Cai, C., Dauskardt, R.H., Nano Lett. 15, 6751 (2015).CrossRefGoogle Scholar