Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T13:42:42.324Z Has data issue: false hasContentIssue false

Ultrananocrystalline Diamond in the Laboratory and the Cosmos

Published online by Cambridge University Press:  19 April 2013

Get access

Extract

Diamond is one of the most intriguing and potentially useful materials known to science. It is the hardest substance that we know, and it has the highest sound velocity and the highest thermal conductivity of any material. Because diamond is so difficult to fabricate, the challenge is to take meaningful advantage of its extraordinary properties. The chemical vapor deposition (CVD) of diamond overcomes many of the fabrication problems and has become the focus of an important research and development effort worldwide. Although the General Electric Corp. succeeded about 50 years ago in the synthesis of diamond by high-pressure, high-temperature techniques, the low-pressure, or CVD, methods were developed only about 20 years ago in the former Soviet Union, Japan, and the United States. This presentation will deal with a more recent development in diamond CVD that allows one to control the crystallite size in such a way as to synthesize phase-pure nanocrystalline diamond films, which have many unique and fascinating properties not shared by other forms of diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hazen, R.M., The Diamond Makers (Cambridge University Press, Cambridge, 1999).Google Scholar
2. Spear, K.E. and Dismukes, J.P., eds., Synthetic Diamond (John Wiley & Sons, New York, 1994); B. Dischler and C. Wild, eds., Low-Pressure Synthetic Diamond (Springer, Berlin, 1998).Google Scholar
3. Gruen, D.M., Annu. Rev. Mater. Sci. 29 (1999) p.211.CrossRefGoogle Scholar
4. Celii, F.G. and Butler, J.E., Annu. Rev. Phys. Chem. 42 (1991) p.643.CrossRefGoogle Scholar
5. Wild, C., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., and Brenn, R., Diamond Relat. Mater. 2 (1993) p. 158.Google Scholar
6. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318 (1985) p.162.Google Scholar
7. Krätschmer, W., Lamb, L.D., Fostiropoulas, K., and Huffman, D.R., Nature 347 (1990) p.354.CrossRefGoogle Scholar
8. Lykke, K.R., Pellin, M.J., Wurz, P., Gruen, D.M., Hunt, J.E., and Wasielewski, M.R., in Clusters and Cluster-Assembled Materials, edited by Averback, R.S., Bernholc, J., and Nelson, D.L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, 1991) p.679.Google Scholar
9. Redfern, P.D., Horner, D.A., Curtiss, L.A., and Gruen, D.M., J. Phys. Chem. 100 (1996) p. 11654.Google Scholar
10. Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X., Appl. Phys. Lett. 64 (1994) p. 1502; D.M. Gruen, S. Liu, A.R. Krauss, and X. Pan, J. Appl. Phys. 75 (1994) p.1758.CrossRefGoogle Scholar
11. Gruen, D.M., Nucl. Instrum. Methods Phys. Res., Sect. B 78 (1993) p.118.Google Scholar
12. Goyette, A.N., Lawler, J.E., Anderson, L.W., Gruen, D.M., McCauley, T.G., Zhou, D., and Krauss, A.R., Plasma Sources Sci. Technol. 7 (1998) p.149; A.N. Goyette, J.E. Lawler, L.W. Anderson, D.M. Gruen, T.G. McCauley, D. Zhou, and A.R. Krauss, In Situ Process Diagnostics and Intelligent Materials Processing, edited by P.A. Rosenthal, W.M. Duncan, and J.A. Woollam (Mater. Res. Soc. Symp. Proc. 502, Warrendale, PA, 1998) p.275.Google Scholar
13. Qin, L.C., Zhou, D., Krauss, A.R., and Gruen, D.M., Nanostruct. Mater. 10 (4)(1998) p.649.CrossRefGoogle Scholar
14. Zhou, D., Gruen, D.M., Qin, L.C., McCauley, T.G., and Krauss, A.R., J.Appl. Phys. 84 (4) (1998) p.1981.CrossRefGoogle Scholar
15. Gruen, D.M., Curtiss, L.A., Redfern, P.C., and Qin, L.C., in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes Related Materials, edited by Kadish, K.M. and Ruoff, R.S. (The Electrochemical Society, Proc. 98-8, Pennington, NJ, 1998) p.509.Google Scholar
16. Gruen, D.M., Redfern, P.C., Horner, D.A., Zapol, P., and Curtiss, L.A., J. Phys. Chem. B 103 (26) (1999) p.5459.CrossRefGoogle Scholar
17. Keblinski, P., Wolf, D., Phillpot, S.R., and Gleiter, H., J.Mater. Res. 13 (1998) p.2077.CrossRefGoogle Scholar
18. Zapol, P., Sternberg, M., Curtiss, L., Frauenheim, T., and Gruen, D.M., Phys. Rev. B (2001) in press.Google Scholar
19. Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A., and Zapol, P., Appl. Phys. Lett. 79 (2001) p. 1441.CrossRefGoogle Scholar
20. Krauss, A.R., Auciello, O., Ding, M.Q., Gruen, D.M., Huang, Y., Zhirnov, V.V., Givargizov, E.I., Breskin, A., Chechen, R., Shefer, E., Konov, V., Pimenov, S., Karabutov, A., Rakhimov, A., and Suetin, N., J.Appl. Phys. 89 (5) (2001) p. 2958.CrossRefGoogle Scholar
21. Chen, Q., Gruen, D.M., Krauss, A.R., Corrigan, T.D., Witek, M., and Swain, G.M., J. Electro-chem. Soc. 148 (1) (2001) p.E44.Google Scholar
22. Auciello, O., Krauss, A.R., Gruen, D.M., Meyer, E.M., Tucek, J., Busmann, H.G., Sumant, A., Jayatissa, A., Moldovan, N., Mancini, D.C., and Gardos, M.N., in Materials Science of Microelectro-mechanical Systems (MEMS) Devices II, edited by Boer, M.P. de, Heuer, A.H., Jacobs, S.J., and Peeters, E. (Mater. Res. Soc. Symp. Proc. 605, Warrendale, PA, 2000) p.73.Google Scholar
23. Gruen, D.M., in Properties, Growth and Applications of Diamond, Chap. B2, EMIS Data Reviews Ser. No. 26, and INSPEC Publication, edited by Nazare, M.H. and Nevés, A.J. (Institution of Electrical Engineers, London, 2001) p.197.Google Scholar
24. Hrivnak, B.J., Langhill, P.P., Su, K.Y.L., and Kwok, S., Astrophys. J. 513 (1999) p.421; S. Kwok, K.Y.L. Su, and B.J. Hrivnak, Astrophys. J. 501 (1998) p.L117.CrossRefGoogle Scholar
25. Crampton, D., Crowley, A.P., and Humphreys, R.M., Astrophys. J. 198 (1975) p.L135.Google Scholar
26. Hrivnak, B.J. and Kwok, S., Astrophys. J. 513 (1999) p.869.CrossRefGoogle Scholar
27. Volk, K., Kwok, S., and Hrivnak, B.J., Astro-phys. J. 516 (1999) p.L99; S. Kwok, K. Volk, and B.J. Hrivnak, in Proc. IAU Symp., Vol.191, edited by T. LeBertre, A. Lèbre, and C. Waelkens (International Astronomical Union, Paris, 1999) p.297.Google Scholar
28. Hellemans, A., Science 284 (1999) p. 1113; G. von Helden, A.G.G.M. Tielens, and D. van Heijnsbergen, M.A. Duncan, S. Hony, L.B.F.M. Waters, and G. Meijer, Science 288 (2000) p.313.Google Scholar
29. Lewis, R.S., Anders, E., and Daine, B.T., Nature 339 (1989) p.117.Google Scholar
30. Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., Lewis, R.S., and Buseck, P.R., Geochim. Cosmochim. Acta 60 (1996) p.4853.CrossRefGoogle Scholar