Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:35:24.808Z Has data issue: false hasContentIssue false

Ultrahigh-Temperature Materials for Jet Engines

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This introductory article provides the background for the September 2003 issue of MRS Bulletin on Ultrahigh-Temperature Materials for Jet Engines. It covers the need for these materials, the history of their development, and current challenges driving continued research and development. The individual articles that follow review achievements in four different material classes (three in situ composites—based on molybdenum silicide, niobium silicide, and silicon carbide, respectively—and high-melting-point platinum-group-metal alloys), as well as advances in coating systems developed both for oxidation protection and as thermal barriers. The articles serve as a benchmark to illustrate the progress made to date and the challenges ahead for ultrahigh-temperature jet-engine materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

References

1.Golley, J., Genesis of the Jet: Frank Whittle and the Invention of the Jet Engine (Airlife Publications, the Crowood Press, Wiltshire, UK, 1998).Google Scholar
2.Conner, M., Hans Von Ohain: Elegance in Flight (American Institute of Aeronautics and Astronautics, Reston, VA, 2002).CrossRefGoogle Scholar
3.Hunecke, K., Jet Engines: Fundamentals of Theory, Design, and Operation (Motorbooks International, St. Paul, 1998).Google Scholar
4.Westbrook, J.H., in Dislocations in Solids, Vol. 10, edited by Nabarro, F.R.N. and Duesbery, M.S. (Elsevier, Amsterdam, 1996) p. 3.Google Scholar
5.Klopp, W.D., in The Superalloys, edited by Sims, C.T. and Hagel, W.C. (John Wiley & Sons, New York, 1972) p. 175.Google Scholar
6.Ro, Y., Koizumi, Y., Nakazawa, S., Kobayashi, T., Bannai, E., and Harada, H., Scripta Mater. 46 (2002) p. 331.CrossRefGoogle Scholar
7.Sims, C.T., Stoloff, N.S., and Hagel, W.C., eds., Superalloys II (John Wiley & Sons, New York, 1987).Google Scholar
8.Huang, S.-C. and Chesnutt, J.C., in Intermetallic Compounds: Principles and Practice, Vol. 2, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 1995) p. 73.Google Scholar
9.Kim, Y.-W., Wagner, R., and Yamaguchi, M., eds., Gamma Titanium Aluminides (The Minerals, Metals and Materials Society, Warrendale, PA, 1995).CrossRefGoogle Scholar
10.Kim, Y.-W., Dimiduk, D.M., and Loretto, M., eds., Gamma Titanium Aluminides 1999 (The Minerals, Metals and Materials Society, Warrendale, PA, 2000).Google Scholar
11.Kim, Y.-W. and Rosenberger, A.H., eds., Gamma Titanium Aluminides 2003 (The Minerals, Metals and Materials Society, Warrendale, PA) in press.Google Scholar
12.Miracle, D.B. and Darolia, R., in Intermetallic Compounds: Principles and Practice, Vol. 2, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 1995) p. 53.Google Scholar
13.Noebe, R.D. and Walston, W.S., in Structural Intermetallics 1997 (ISSI-2), edited by Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and Yamaguchi, M. (The Minerals, Metals and Materials Society, Warrendale, PA, 1997) p. 573.Google Scholar
14.Palm, M. and Sauthoff, G., in Structural Intermetallics 2001 (ISSI-3), edited by Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 149.Google Scholar
15.Walston, W.S. and Darolia, R., in Structural Intermetallics 2001 (ISSI-3), edited by Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 735.Google Scholar
16.Whittenberger, J.D., Raj, S.V., Locci, I.E., and Salem, J.A., in Structural Intermetallics 2001 (ISSI-3), edited by Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 775.Google Scholar
17.Raj, S.V., Locci, I.E., and Whittenberger, J.D., in Structural Intermetallics 2001 (ISSI-3), edited by Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 785.Google Scholar
18.Wolff, I.M., Sauthoff, G., Cornish, L.A., De, H., Steyn, V., and Coetzee, R., in Structural Intermetallics 1997 (ISSI-2), edited by Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and Yamaguchi, M. (The Minerals, Metals and Materials Society, Warrendale, PA, 1997) p. 815.Google Scholar
19.Wolff, I.M., in Intermetallic Compounds: Principles and Practice, Vol. 3, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 2002) p. 53.CrossRefGoogle Scholar
20.Yamabe-Mitarai, Y., Ro, Y., Maruko, T., Yokokawa, T., and Harada, H., in Structural Intermetallics 1997 (ISSI-2), edited by Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and Yamaguchi, M. (The Minerals, Metals and Materials Society, Warrendale, PA, 1997) p. 805.Google Scholar
21.Yamabe-Mitarai, Y., Gu, Y.F., and Harada, H., Platinum Met. Rev. 46 (2002) p. 74.CrossRefGoogle Scholar
22.Yamabe-Mitarai, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H., Scripta Mater. 36 (4) (1997) p. 393.CrossRefGoogle Scholar
23.Miracle, D.B. and Donaldson, S.L., in ASM Handbook Volume 21: Composites, edited by Miracle, D.B. and Donaldson, S.L. (ASM International, Materials Park, OH, 2001) p. 3.Google Scholar
24.Jackson, M.R. (private communication).Google Scholar
25.Lipsitt, H.A., Blackburn, M.J., and Dimiduk, D.M., in Intermetallic Compounds: Principles and Practice, Vol. 3, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 2002) p. 471.CrossRefGoogle Scholar
26.Mendiratta, M.G., Subramanian, P.R., Parthasarathy, T.A., and Dimiduk, D.M., (unpublished).Google Scholar
27.Iridium Databook (International Nickel Co., Mississauga, Ontario, 1960s).Google Scholar
28.Robinson, R.C. and Smialek, J.L., J. Am. Ceram. Soc. 82 (7) (1999) p. 1817.CrossRefGoogle Scholar
29.Waku, Y., Adv. Mater. 10 (1998) p. 615.3.0.CO;2-T>CrossRefGoogle Scholar
30.Erickson, G.L., JOM 47 (4) (1995) p. 36.CrossRefGoogle Scholar
31.Gu, Y.F., Yamabe-Mitarai, Y., Nakazawa, S., Ro, Y., and Harada, H., Metall. Mater. Trans. A 33A (2002) p. 1281.CrossRefGoogle Scholar
32.Corman, G.S., Brun, M.K., and Luthra, K., in Proc. ASME Int. Gas Turbine & Aeroengine Congress & Exhibition (ASME International, New York, 1999) paper No. 99-GT-234.Google Scholar
33.Corman, G.S., Dean, A.J., Brabetz, S., Brun, M.K., Luthra, K.L., Tognarelli, L., and Pecchioli, M., Trans. ASME—J. Eng. Gas Turb. Power 124 (3) (2002) p. 459.CrossRefGoogle Scholar
34.Luthra, K.L. and Corman, G.S., in High Temperature Ceramic Matrix Composites, edited by Krenkel, W., Naslain, R., and Schneider, H. (Wiley-VCH, Weinheim, 2001) p. 744.CrossRefGoogle Scholar
35.Hill, P.J., Yamabe-Mitarai, Y., Murakami, H., Cornish, L.A., Witcomb, M.J., Wolff, I.M., and Harada, H., in Structural Intermetallics 2001 (ISSI-3), edited by Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 527.Google Scholar
36.Fischer, B., Adv. Eng. Mater. 3 (2001) p. 811.3.0.CO;2-#>CrossRefGoogle Scholar
37.Ito, K., Kumagai, M., Hayashi, T., and Yamaguchi, M., Scripta Mater. 49 (2003) p. 285.CrossRefGoogle Scholar
38.Waku, Y. (private communication).Google Scholar
39.Dahotre, N., ed., Elevated Temperature Coatings, TMS Symposia I–IV, 1995, 1997, 1999, and 2001 (The Minerals, Metals and Materials Society, Warrendale, PA).CrossRefGoogle Scholar
40.Donachie, M.J. and Donachie, S.J., Superalloys—A Technical Guide (ASM International, Materials Park, OH, 2002).CrossRefGoogle Scholar
41.Superalloys, proceedings of a series of conferences held at Seven Springs, PA, 1964–2000, with various editors (The Minerals, Metals and Materials Society, Warrendale, PA).Google Scholar
42.Sauthoff, G., Intermetallics (VCH, Weinheim, 1995).CrossRefGoogle Scholar
43.Stoloff, N.S. and Sikka, V.K., Physical Metallurgy and Processing of Intermetallic Compounds (Chapman and Hall, New York, 1996).CrossRefGoogle Scholar
44.Westbrook, J.H. and Fleischer, R.L., eds., Intermetallic Compounds: Principles and Practice, Vols. 1 and 2 (1995), Vol. 3 (2002) (John Wiley & Sons, Chichester, UK).Google Scholar
45.High Temperature Ordered Intermetallic Alloys, various editors, Vols. I (1985), II (1987), III (1989), IV (1991), V (1993), VI (1995), VII (1997), VIII (1999), and IX (2001) (Materials Research Society, Warrendale, PA).Google Scholar
46.Miracle, D.B. and Donaldson, S.L., eds., ASM Handbook Volume 21: Composites (ASM International, Materials Park, OH, 2001).Google Scholar
47.Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V., eds., Structural Intermetallics (ISSI-1) (The Minerals, Metals and Materials Society, Warrendale, PA, 1993);Google Scholar
Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and M. Yamaguchi, eds., Structural Intermetallics (ISSI-2) (1997);Google Scholar
Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D., eds., Structural Intermetallics (ISSI-3) (2002).Google Scholar