Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T01:45:31.491Z Has data issue: false hasContentIssue false

Ultrafast electron energy-loss spectroscopy in transmission electron microscopy

Published online by Cambridge University Press:  10 July 2018

Enrico Pomarico
Affiliation:
École Polytechnique Fédérale de Lausanne, Switzerland; [email protected]
Ye-Jin Kim
Affiliation:
Ulsan National Institute of Science and Technology, South Korea; [email protected]
F. Javier García de Abajo
Affiliation:
Institut de Ciències Fotòniques, Spain; [email protected]
Oh-Hoon Kwon
Affiliation:
Department of Chemistry, Ulsan National Institute of Science and Technology, South Korea; [email protected]
Fabrizio Carbone
Affiliation:
École Polytechnique Fédérale de Lausanne, Switzerland; [email protected]
Renske M. van der Veen
Affiliation:
Department of Chemistry, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, USA; [email protected]
Get access

Abstract

In the quest for dynamic multimodal probing of a material’s structure and functionality, it is critical to be able to quantify the chemical state on the atomic-/nanoscale using element-specific electronic and structurally sensitive tools such as electron energy-loss spectroscopy (EELS). Ultrafast EELS, with combined energy, time, and spatial resolution in a transmission electron microscope, has recently enabled transformative studies of photoexcited nanostructure evolution and mapping of evanescent electromagnetic fields. This article aims to describe state-of-the-art experimental techniques in this emerging field and its major uses and future applications.

Type
Ultrafast Imaging of Materials Dynamics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L., Science 319 (5866), 1073 (2008).CrossRefGoogle Scholar
Colliex, C., J. Electron. Microsc. 60 (Suppl. 1), S161 (2011).Google Scholar
Carbone, F., Kwon, O.-H., Zewail, A.H., Science 325 (5937), 181 (2009).CrossRefGoogle Scholar
van der Veen, R.M., Penfold, T.J., Zewail, A.H., Struct. Dyn. 2 (2), 024302 (2015).CrossRefGoogle Scholar
Vanacore, G.M., van der Veen, R.M., Zewail, A.H., ACS Nano 9 (2), 1721 (2015).CrossRefGoogle Scholar
Barwick, B., Flannigan, D.J., Zewail, A.H., Nature 462 (7275), 902 (2009).CrossRefGoogle Scholar
Yurtsever, A., van der Veen, R.M., Zewail, A.H., Science 335 (6064), 59 (2012).CrossRefGoogle Scholar
Piazza, L., Lummen, T.T.A., Quiñonez, E., Murooka, Y., Reed, B.W., Barwick, B., Carbone, F., Nat. Commun. 6 (1), 6407 (2015).CrossRefGoogle Scholar
Liu, H., Baskin, J.S., Zewail, A.H., Proc. Natl. Acad. Sci. U.S.A. 113 (8), 2041 (2016).CrossRefGoogle Scholar
Flannigan, D.J., Barwick, B., Zewail, A.H., Proc. Natl. Acad. Sci. U.S.A. 107 (22), 9933 (2010).CrossRefGoogle Scholar
Kaplan, M., Yoo, B.-K., Tang, J., Karam, T.E., Liao, B., Majumdar, D., Baltimore, D., Jensen, G.J., Zewail, A.H., Angew. Chem. Int. Ed. Engl. 56 (38), 11498 (2017).CrossRefGoogle Scholar
Piazza, L., Ma, C., Yang, H.X., Mann, A., Zhu, Y., Li, J.Q., Carbone, F., Struct. Dyn. 1 (1), 014501 (2014).CrossRefGoogle Scholar
Su, Z., Baskin, J.S., Zhou, W., Thomas, J.M., Zewail, A.H., J. Am. Chem. Soc. 139 (13), 4916 (2017).CrossRefGoogle Scholar
Flannigan, D.J., Zewail, A.H., Acc. Chem. Res. 45 (10), 1828 (2012).CrossRefGoogle Scholar
Adhikari, A., Eliason, J.K., Sun, J., Bose, R., Flannigan, D.J., Mohammed, O.F., ACS Appl. Mater. Interfaces 9 (1), 3 (2016).CrossRefGoogle Scholar
Browning, N.D., Campbell, G.H., Evans, J.E., LaGrange, T.B., Jungjohann, K.L., Kim, J.S., Masiel, D.J., Reed, B.W., in Handbook of Nanoscopy (Wiley-VCH, Weinheim, 2012), vol. 1, pp. 309343.CrossRefGoogle Scholar
LaGrange, T., Reed, B.W., Masiel, D.J., MRS Bull. 40 (1), 22 (2015).CrossRefGoogle Scholar
Yalunin, S.V., Schröder, B., Ropers, C., Phys. Rev. B Condens. Matter 93 (11), 13 (2016).CrossRefGoogle Scholar
García de Abajo, F.J., Asenjo-Garcia, A., Kociak, M., Nano Lett. 10 (5), 1859 (2010).CrossRefGoogle Scholar
Park, S.T., Lin, M.M., Zewail, A.H., New J. Phys. 12, 123028 (2010).CrossRefGoogle Scholar
Jouffrey, B., Schattschneider, P., Hebert, C., Ultramicroscopy 102 (1), 61 (2004).CrossRefGoogle Scholar
Chergui, M., Struct. Dyn. 3 (3), 031001 (2016).CrossRefGoogle Scholar
Chen, L.X., Zhang, X., Shelby, M.L., Chem. Sci. 5, 4136 (2014).CrossRefGoogle Scholar
Schultz, T., Vrakking, M., Eds., Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy (Wiley-VCH, Weinheim, Germany, 2014).CrossRefGoogle Scholar
Carbone, F., Struct. Dyn. 2 (2), 020601 (2015).CrossRefGoogle Scholar
Egerton, R.F., Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, New York, 2011), ed. 1.CrossRefGoogle Scholar
Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., Taheri, M.L., Sci. Rep. 7, 8243 (2017).CrossRefGoogle Scholar
van Rens, J.F.M., Verhoeven, W., Franssen, J.G.H., Lassise, A.C., Stragier, X.F.D., Kieft, E.R., Mutsaers, P.H.A., Luiten, O.J., Ultramicroscopy 184 (Pt. B), 77 (2018).CrossRefGoogle Scholar
Li, R.K., Wang, X.J., Phys. Rev. Appl. 8 (5), 054017 (2017).CrossRefGoogle Scholar
Zhou, F., Williams, J., Ruan, C.-Y., Chem. Phys. Lett. 683, 488 (2017).CrossRefGoogle Scholar
Nellist, P.D., Pennycook, S.J., Phys. Rev. Lett. 81 (19), 4156 (1998).CrossRefGoogle Scholar
Rossouw, D., Botton, G.A., Phys. Rev. Lett. 110 (6), 066801(2013).CrossRefGoogle Scholar
Krivanek, O.L., Lovejoy, T.C., Dellby, N., Aoki, T., Carpenter, R.W., Rez, P., Soignard, E., Zhu, J., Batson, P.E., Lagos, M.J., Egerton, R.F., Crozier, P.A., Nature 514 (7521), 209 (2014).CrossRefGoogle Scholar
Lagos, M.J., Truegler, A., Hohenester, U., Batson, P.E., Nature 543 (7646), 529 (2017).CrossRefGoogle Scholar
Pomarico, E., Madan, I., Berruto, G., Vanacore, G.M., Wang, K., Kaminer, I., García de Abajo, F.J., Carbone, F., ACS Photonics 5, 759764 (2018).CrossRefGoogle Scholar
Lummen, T.T.A., Lamb, R.J., Berruto, G., LaGrange, T., Dal Negro, L., García de Abajo, F.J., McGrouther, D., Barwick, B., Carbone, F., Nat. Commun. 7, 13156 (2016).CrossRefGoogle Scholar
Piazza, L., Masiel, D.J., LaGrange, T., Reed, B.W., Barwick, B., Carbone, F., Chem. Phys. 423, 79 (2013).CrossRefGoogle Scholar
García de Abajo, F.J., Howie, A., Phys. Rev. B 65 (11), 115418 (2002).CrossRefGoogle Scholar
García de Abajo, F.J., Barwick, B., Carbone, F., Phys. Rev. B 94 (4), 041404 (2016).CrossRefGoogle Scholar
Kim, U.J., Liu, X.M., Furtado, C.A., Chen, G., Saito, R., Jiang, J., Dresselhaus, M.S., Eklund, P.C., Phys. Rev. Lett. 95 (15), 157402 (2005).CrossRefGoogle Scholar
Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., Nat. Mater. 7 (6), 442 (2008).CrossRefGoogle Scholar
Wark, A.W., Lee, H.J., Qavi, A.J., Corn, R.M., Anal. Chem. 79 (17), 6697 (2007).CrossRefGoogle Scholar
Lv, J., Leong, E.S.P., Jiang, X., Kou, S., Dai, H., Lin, J., Liu, Y.J., Si, G., J. Nanomater. 2015, 474730 (2015).CrossRefGoogle Scholar
Shibata, H., Yamada, T., Phys. Rev. Lett. 81 (16), 3519 (1998).CrossRefGoogle Scholar
Park, H.S., Baskin, J.S., Zewail, A.H., Nano Lett. 10 (9), 3796 (2010).CrossRefGoogle Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E., Miller, R.J.D., J. Appl. Phys. 92 (3), 1643 (2002).CrossRefGoogle Scholar
Lee, Y.M., Kim, Y.J., Kim, Y.-J., Kwon, O.-H., Struct. Dyn. 4 (4), 044023 (2017).CrossRefGoogle Scholar
Kieft, E., Schliep, K.B., Suri, P.K., Flannigan, D.J., Struct. Dyn. 2 (5), 051101 (2015).CrossRefGoogle Scholar
Bücker, K., Picher, M., Cregut, O., LaGrange, T., Reed, B.W., Park, S.T., Masiel, D.J., Banhart, F., Ultramicroscopy 171, 8 (2016).CrossRefGoogle Scholar
Ji, S., Piazza, L., Cao, G., Park, S.T., Reed, B.W., Masiel, D.J., Weissenrieder, J., Struct. Dyn. 4 (5), 054303 (2017).CrossRefGoogle Scholar
Dömer, H., Bostanjoglo, O., Rev. Sci. Instrum. 74 (10), 4369 (2003).CrossRefGoogle Scholar
LaGrange, T., Reed, B.W., Santala, M.K., McKeown, J.T., Kulovits, A., Wiezorek, J.M.K., Nikolova, L., Rosei, F., Siwick, B.J., Campbell, G.H., Micron 43 (11), 1108 (2012).CrossRefGoogle Scholar
LaGrange, T., Campbell, G.H., Reed, B.W., Taheri, M., Pesavento, J.B., Kim, J.S., Browning, N.D., Ultramicroscopy 108 (11), 1441 (2008).CrossRefGoogle Scholar
Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D., Campbell, G.H., Science 321 (5895), 1472 (2008).CrossRefGoogle Scholar
Wang, F., Egerton, R., Malac, M., Ultramicroscopy 109 (10), 1245 (2009).CrossRefGoogle Scholar
Yoo, B.-K., Kwon, O.-H., Liu, H., Tang, J., Zewail, A.H., Nat. Commun. 6, 8639 (2015).CrossRefGoogle Scholar
van der Veen, R.M., Kwon, O.-H., Tissot, A., Hauser, A., Zewail, A.H., Nat. Chem. 5 (5), 395 (2013).CrossRefGoogle Scholar
Park, H.S., Kwon, O.-H., Baskin, J.S., Barwick, B., Zewail, A.H., Nano Lett. 9 (11), 3954 (2009).CrossRefGoogle Scholar
Picher, M., Bücker, K., Lagrange, T., Banhart, F., Ultramicroscopy 188, 41 (2018).CrossRefGoogle Scholar