Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T14:50:18.909Z Has data issue: false hasContentIssue false

Ultrabright and monochromatic nanowire electron sources

Published online by Cambridge University Press:  10 July 2017

Han Zhang
Affiliation:
Advanced Low-Dimensional Materials Laboratory, National Institute for Materials Science, Japan; [email protected]
Jie Tang
Affiliation:
Advanced Low-Dimensional Materials Laboratory, National Institute for Materials Science, Japan; [email protected]
Jinshi Yuan
Affiliation:
Advanced Low-Dimensional Materials Laboratory, National Institute for Materials Science, Japan; [email protected]
Lu-Chang Qin
Affiliation:
Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, USA; [email protected]
Get access

Abstract

The resolution of the electron microscope is now largely limited by the performance of its electron source when various aberrations in the electron imaging system, especially spherical aberrations, are corrected. A nanowire tip could be an ideal point electron source, where electrons are emitted from a small physical area. In this article, we review recent advances in electric-field-induced electron emission using a single nanowire, specifically, single-crystalline lanthanum hexaboride (LaB6) nanowire, compared to the state-of-the-art contemporary tungsten cold-field electron emitter W(310) as well as single atom tip and single-carbon nanotube emitters. Owing to its low work function, improved emission stability, and high emission brightness, the LaB6 nanowire as a cold-field-emission electron source offers a new and exciting opportunity for developing the next generation of electron microscopes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fowler, R.H., Nordheim, L., Proc. R. Soc. Lond. A 119, 173 (1928).Google Scholar
Rezeq, M., Pitters, J., Wolkow, R., J. Chem. Phys. 124, 204716 (2006).Google Scholar
Oshima, C., Rokuta, E., Itagaki, T., Ishikawa, T., Cho, B., e-J. Surf. Sci. Nanotechnol. 3, 412 (2005).Google Scholar
Swanson, L., Schwind, G., Adv. Imaging Elect. Phys. 159, 63 (2009).Google Scholar
Crewe, A.V., Wall, J., Langmore, J., Science 168, 1338 (1970).Google Scholar
Smith, R.C., Cox, D.C., Silva, S.R.P., Appl. Phys. Lett. 87, 103112 (2005).Google Scholar
Wang, M.S., Chen, Q., Peng, L.M., Small 4, 1907 (2008).Google Scholar
Zhang, H., Tang, J., Yuan, J., Yamauchi, Y., Suzuki, T.T., Shinya, N., Nakajima, K., Qin, L.-C., Nat. Nanotechnol. 11, 273 (2016).Google Scholar
Zhao, G.P., Zhang, Q., Zhang, H., Yang, G., Zhou, O., Qin, L.-C., Tang, J., Appl. Phys. Lett. 89, 263113 (2006).Google Scholar
Fan, H.J., Werner, P., Zacharias, M., Small 2, 700 (2006).CrossRefGoogle Scholar
Fang, X.S., Zhang, L.D., J. Mater. Sci. Technol. 22, 1 (2006).Google Scholar
Zheng, J., Yang, R., Xie, L., Qu, J., Liu, Y., Li, X., Adv. Mater. 22, 1451 (2010).Google Scholar
Spindt, C.A., Holland, C.E., Stowell, R.D., Appl. Surf. Sci. 16, 268 (1983).CrossRefGoogle Scholar
Schwoebel, P.R., Spindt, C.A., Holland, C.E., J. Vac. Sci. Technol. B 23, 691 (2005).Google Scholar
Forbes, R.G., Solid State Electron. 45, 779 (2001).Google Scholar
Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J., Science 283, 512 (1999).Google Scholar
Sun, Y., Yeow, J.T.W., Jaffray, D.A., Small 9, 3385 (2013).CrossRefGoogle ScholarPubMed
Zhai, T.Y., Li, L., Ma, Y., Liao, M.Y., Wang, X., Fang, X.S., Yao, J.N., Bando, Y., Golberg, D., Chem. Soc. Rev. 40, 2986 (2011).Google Scholar
Nagao, M., Yoshida, T., Microelectron. Eng. 132, 14 (2015).Google Scholar
Fang, X.S., Bando, Y., Gautam, U.K., Ye, C.H., Golberg, D., J. Mater. Chem. 18, 509 (2008).CrossRefGoogle Scholar
Zhang, H., Zhang, Q., Zhao, G.P., Tang, J., Zhou, O., Qin, L.-C., J. Am. Chem. Soc. 127, 13120 (2005).Google Scholar
Zhang, H., Tang, J., Zhang, Q., Zhao, G.P., Yang, G., Zhang, J., Zhou, O., Qin, L.-C., Adv. Mater. 18, 87 (2006).Google Scholar
Zhang, H., Tang, J., Yuan, J., Ma, J., Shinya, N., Nakajima, K., Murakami, H., Ohkubo, T., Qin, L.-C., Nano Lett. 10, 3539 (2010).Google Scholar
Zhao, G.P., Zhang, J., Zhang, Q., Zhang, H., Zhou, O., Qin, L.-C., Tang, J., Appl. Phys. Lett. 89, 193113 (2006).Google Scholar
Yuan, J.S., Zhang, H., Tang, J., Shinya, N., Nakajima, K., Qin, L.-C., Appl. Phys. Lett. 100, 113111 (2012).Google Scholar
Yuan, J.S., Zhang, H., Tang, J., Shinya, N., Nakajima, K., Qin, L.-C., J. Am. Ceram. Soc. 95, 2352 (2012).Google Scholar
Shimoyama, H., Maruse, S., Ultramicroscopy 15, 239 (1984).Google Scholar
Bronsgeest, M.S., Barth, J.E., Swanson, L.W., Kruit, P., J. Vac. Sci. Technol. B 26, 949 (2008).Google Scholar
Schwind, G.A., Mager, G., Swanson, L.W., J. Vac. Sci. Technol. B 24, 2897 (2006).Google Scholar
de Jonge, N., Allioux, M., Oostveen, J.T., Teo, K.B.K., Milne, W.I., Phys. Rev. Lett. 94, 186807 (2005).Google Scholar
Swanson, L.W., Martin, N.A., J. Appl. Phys. 46, 2029 (1975).Google Scholar
Rahman, F., Onoda, J., Imaizumi, K., Mizuno, S., Surf. Sci. 602, 2128 (2008).Google Scholar
Nakahara, H., Kusano, Y., Kono, T., Saito, Y., Appl. Surf. Sci. 256, 1214 (2009).Google Scholar
Hwang, I.-S., Kuo, H.-S., Chang, C.-C., Tsong, T.T., J. Electrochem. Soc. 157, P7 (2010).Google Scholar
Yamamoto, S., Rep. Prog. Phys. 69, 181 (2006).Google Scholar
Yamashita, T., Matsuda, K., Kona, T., Mogami, Y., Komaki, M., Murata, Y., Oshima, C., Kuzumaki, T., Horiike, Y., Surf. Sci. 514, 283 (2002).Google Scholar
Ishikawa, T., Cho, B., Rokuta, E., Oshima, C., Appl. Phys. Express 1, 077001 (2008).Google Scholar
Kruit, P., Bezuijen, M., Barth, J.E., J. Appl. Phys. 99, 024315 (2006).Google Scholar
Scheinfein, M.R., Qian, W., Spence, J.C.H., J. Appl. Phys. 73, 2057 (1993).Google Scholar
Jensen, K.L., J. Appl. Phys. 107, 014905 (2010).Google Scholar
Qian, W., Scheinfein, M.R., Spence, J.C.H., J. Appl. Phys. 73, 7041 (1993).Google Scholar
Chang, C.C., Kuo, H.S., Hwang, I.S., Tsong, T.T., Nanotechnology 20, 115401 (2009).CrossRefGoogle Scholar
Fransen, M.J., Overwijk, M.H.F., Kruit, P., Appl. Surf. Sci. 146, 357 (1999).CrossRefGoogle Scholar
Houdellier, F., Masseboeuf, A., Monthioux, M., Hytch, M.J., Carbon 50, 2037 (2012).Google Scholar
Yamamoto, S., Fukuhara, S., Okano, H., Saito, N., Jpn. J. Appl. Phys. 15, 1643 (1976).Google Scholar
Christmann, K., Surf. Sci. Rep. 9, 1 (1988).Google Scholar
Naumovets, A.G., Vedula, Y.S., Surf. Sci. Rep. 4, 365 (1985).Google Scholar
Kasuya, K., Katagiri, S., Ohshima, T., Kokubo, S., J. Vac. Sci. Technol. B 28, L55 (2010).Google Scholar
Kasuya, K., Katagiri, S., Ohshima, T., J. Vac. Sci. Technol. B 34, 042202 (2016).CrossRefGoogle Scholar
Yamamoto, S., Hosoki, S., Fukuhara, S., Futamoto, M., Surf. Sci. 86, 734 (1979).Google Scholar
Nieuwenhuys, B.E., Surf. Sci. 59, 430 (1976).Google Scholar
Futamoto, M., Hosoki, S., Okano, H., Kawabe, U., J. Appl. Phys. 48, 3541 (1977).Google Scholar
de Jonge, N., Allioux, M., Oostveen, J.T., Teo, K.B.K., Milne, W.I., Appl. Phys. Lett. 87, 133118 (2005).Google Scholar
Akamine, Y., Fujiwara, K., Oshima, C., Cho, B., J. Vac. Sci. Technol. B 29, 041808 (2011).CrossRefGoogle Scholar
Rokuta, E., Kuo, H.S., Itagaki, T., Nomura, K., Ishikawa, T., Cho, B.L., Hwang, I.S., Tsong, T.T., Oshima, C., Surf. Sci. 602, 2508 (2008).Google Scholar
Binh, V.T., Purcell, S.T., Garcia, N., Doglioni, J., Phys. Rev. Lett. 69, 2527 (1992).Google Scholar
Uijttewaal, M.A., de Wijs, G.A., de Groot, R.A., J. Phys. Chem. B 110, 18459 (2006).Google Scholar
Krivanek, O., Chisholm, M., Nicolosi, V., Pennycook, T., Corbin, G., Dellby, N., Murfitt, M., Own, C., Szilagyi, Z., Oxley, M., Pantelides, S., Pennycook, S., Nature 464, 571 (2010).Google Scholar
Krivanek, O., Lovejoy, T., Dellby, N., Aoki, T., Carpenter, R., Rez, P., Soignard, E., Zhu, J., Batson, P., Lagos, M., Egerton, R., Crozier, P., Nature 514, 209 (2014).Google Scholar
Kruger, M., Schenk, M., Hommelhoff, P., Nature 475, 78 (2011).Google Scholar
Aseyev, S., Weber, P., Ischenko, A., J. Anal. Sci. Methods Instrum. 3, 30 (2013).Google Scholar