Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T21:40:25.306Z Has data issue: false hasContentIssue false

Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Over the years, many new materials have been introduced in advanced complementary metal oxide semiconductor (CMOS) processes in order to continue the trend of reducing the gate length and increasing the performance of CMOS devices. This is clearly evidenced in the International Technology Roadmap for Semiconductors (ITRS), which indicates the requirements and technological challenges in the microelectronics industry in various technology nodes. Every new technology node, characterized by the minimal device dimensions that are used, has required innovations in new materials and transistor design. The introduction of deposited high-κ gate dielectrics and metal gates as replacements for the thermally grown SiO2 and poly-Si electrode was a major challenge that has been met in the transition toward the 32 nm technology node since it replaced the heart of the metal oxide semiconductor structure. For the next generation of technology nodes, even bigger hurdles will need to be overcome, since new device structures and high-mobility channel materials such as Ge and III–V compounds might be needed, according to the ITRS roadmap, to meet the power and performance specifications of the 16 nm CMOS node and beyond. The basic properties of these high-mobility channel materials and their impact on the device performance have to be fully understood to allow process integration and full-scale manufacturing. In addition to thermal stability, compatibility with other materials, electronic transport properties, and especially the passivation of electronically active defects at the interface with a high-κ dielectric, are enormous challenges. Many encouraging results have been obtained, but the stringent demands in terms of electrical performance and oxide thickness scaling needed for highly scaled CMOS devices are not yet fully met. Other areas where breakthroughs will be needed are the formation of low-resistivity contacts, especially on III–V materials, and III–V materials suited for pMOS channels. An overview of the major successes and remaining critical issues in the materials research on high-mobility channel materials for advanced CMOS devices is given in this issue of MRS Bulletin.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Moore, G.E., Electronics 38, 114 (1965).Google Scholar
2Dennard, R., Gaensslen, F., Yu, H., Rideout, V., Bassous, E., Leblanc, A., IEEE J. Solid-State Circuits 9, 256 (1974).CrossRefGoogle Scholar
3Baccarani, G., Wordeman, M., Dennard, R., IEEE Trans. Electron Devices 31, 452 (1984).CrossRefGoogle Scholar
4Chau, R., “Gate Dielectric Scaling for High-Performance CMOS: from SiO2 to High-κ Metal-Gate,” (International Workshop on Gate Insulator, November 2003), pp. 124126.Google Scholar
5Intel, “Intel's Transistor Technology Breakthrough Represents Biggest Change to Computer Chips in 40 Years,” (January 2007); www.intel.com.Google Scholar
6Mistry, K., Allen, C., Auth, C., Beattie, B., Bergstrom, D., Bost, M., Brazier, M., Buehler, M., Cappellani, A., Chau, R., Choi, C.-H., Ding, G., Fischer, K., Ghani, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., He, J., Hicks, J., Huessner, R., Ingerly, D., Jain, P., James, R., Jong, L., Joshi, S., Kenyon, C., Kuhn, K., Lee, K., Liu, H., Maiz, J., McIntyre, B., Moon, P., Neirynck, J., Pae, S., Parker, C., Parsons, D., Prasad, C., Pipes, L., Prince, M., Ranade, P., Reynolds, T., Sandford, J., Shifren, L., Sebastian, J., Seiple, J., Simon, D., Sivakumar, S., Smith, P., Thomas, C., Troeger, T., Vandervoorn, P., Williams, S., Zawadzki, K., IEDM Tech. Dig. (IEEE Piscataway) 247 (2007).Google Scholar
7Chau, R., Datta, S., Doczy, M., Doyle, B., Jin, B., Kavalieros, B., Majumdar, A., Metz, M., Radosavljevic, M., IEEE Trans. Nanotechnol. 4 (2), 153 (March 2005).CrossRefGoogle Scholar
8del Alamo, J., Antoniadis, D., “IEDM Short Course: Emerging Nanotechnology and Nano-Electronics,” Washington, DC, 9 December 2007.Google Scholar
9Lundstrom, M., IEEE Electron Device Lett. 18, 361 (1997).CrossRefGoogle Scholar
10Takagi, S., Irisawa, T., Tezuka, T., Numata, T., Nakaharai, S., Hirashita, N., Moriyama, Y., Usuda, K., Toyoda, E., Dissanayake, S., Shichijo, M., Nakane, R., Sugahara, S., Takenaka, M., Sugiyama, N., IEEE Trans. Electron Devices 55, 21 (2008).CrossRefGoogle Scholar
11Becke, H., Hall, R., White, J., Solid-State Electron. 8, 813 (1965).CrossRefGoogle Scholar
12Goel, N., Heh, D., Koveshnikov, S., Majumdar, K., Ok, I., Oktyabrsky, S., Tokranov, V., Khambapati, R., Yakimov, M., Sun, Y., Pianetta, P., Gaspe, C.K., Santos, M.B., Lee, J., Datta, S., Majhi, P., Tsai, W., IEDM Tech. Dig. 363 (2008).Google Scholar
13Wu, N., Zhang, Q., Zhu, C., Chan, D.S., Li, M.F., Balasubramanian, N., Chin, A., Kwong, D.L., Appl. Phys. Lett. 85, 4127 (2004).CrossRefGoogle Scholar
14Zimmerman, P., Nicholas, G., De Jaeger, B., Kaczer, B., Stesmans, A., Ragnarsson, L., Brunco, D., Leys, F., Caymax, M., Winderickx, G., Opsomer, K., Meuris, M., Heyns, M., IEDM Tech. Dig. (IEEE Piscataway) 655 (2006).Google Scholar
15Koveshnikov, S., Tsai, W., Ok, I., Lee, J.C., Torkanov, V., Yakimov, M., Oktyabrsky, S., Appl. Phys. Lett. 88, 022106 (2006).CrossRefGoogle Scholar
16Ok, I., Kim, H., Zhang, M., Kang, C.Y., Rhee, S.J., Choi, C., Krishnan, S.A., Lee, T., Zhu, F., Thareja, G., Lee, J.C., IEEE Electron Device Lett. 27, 145 (2006).CrossRefGoogle Scholar
17Koester, S.J., Kiewra, E.W., Sun, Y., Meumayer, D.A., Ott, J.A., Copel, M., Sadana, D.K., Webb, D.J., Fompeyrine, J., Locquet, J.-P., Marchiori, C., Sousa, M., Germann, R., Appl. Phys. Lett. 89, 042104 (2006).CrossRefGoogle Scholar
18Shahrjerdi, D., Oye, M.M., Holmes, A.L., Banerjee, S.K., Appl. Phys. Lett. 89, 043501 (2006).CrossRefGoogle Scholar
19Chin, H.C., Zhu, M., Tung, C.H., Samudra, G.S., Yeo, Y.C., IEEE Electron Device Lett. 29, 553 (2008).CrossRefGoogle Scholar
20de Souza, J.P., Kiewra, E., Sun, Y., Callegari, A., Sadana, D.K., Shahidi, G., Webb, D.J., Fompeyrine, J., Germann, R., Rossel, C., Marchiori, C., Appl. Phys. Lett. 92, 153508 (2008).CrossRefGoogle Scholar
21Sugawara, T., Oshima, Y., Sreenivasan, R., McIntyre, P.C., Appl. Phys. Lett. 90, 112912 (2007).CrossRefGoogle Scholar
22Takagi, S., Maeda, T., Taoka, N., Nishizawa, M., Morita, Y., Ikeda, K., Yamashita, Y., Nishikawa, M., Kumagai, H., Nakane, R., Sugahara, S., Sugiyama, N., Microelectron. Eng. 84, 2314 (2007).CrossRefGoogle Scholar
23Delabie, A., Bellenger, F., Houssa, M., Conard, T., Van Elshocht, S., Caymax, M., Heyns, M., Meuris, M., Appl. Phys. Lett. 91, 082904 (2007).CrossRefGoogle Scholar
24Whang, S.J., Lee, S.J., Gao, F., Wu, N., Zhu, C.X., Pan, J.S., Tang, L.J., Kwong, D.L., IEDM Tech. Dig. (IEEE Piscataway) 307 (2004).Google Scholar
25Houssa, M., Nelis, D., Hellin, D., Pourtois, G., Conard, T., Paredis, K., Vanormelingen, K., Vantomme, A., Van Bael, M.K., Mullens, J., Caymax, M., Meuris, M., Heyns, M., Appl. Phys. Lett. 90, 222105 (2007).CrossRefGoogle Scholar
26Mavrou, G., Galata, S., Tsipas, P., Sotiropoulos, A., Panayiotatos, Y., Dimoulas, A., Evangelou, E.K., Seo, J.W., Dieker, Ch., J. Appl. Phys. 103, 014506 (2008).CrossRefGoogle Scholar
27Dimoulas, A., Gusev, E., McIntyre, P.C., Heyns, M., Eds., Advanced Gate Stacks for High-Mobility Semiconductors (Springer, New York, 2007).CrossRefGoogle Scholar
28Yablonovitch, E., Sandroff, C.J., Bhat, R., Gmitter, T., Appl. Phys. Lett. 51, 439 (1987).CrossRefGoogle Scholar
29Skromme, B.J., Sandroff, C.J., Yablonovitch, E., Gmitter, T., Appl. Phys. Lett. 51, 2022 (1987).CrossRefGoogle Scholar
30Goel, N., Majhi, P., Chui, C.O., Tsai, W., Choi, D., Harris, J.S., Appl. Phys. Lett. 89, 163517 (2006).CrossRefGoogle Scholar
31Ye, P.D., Wilk, G.D., Kwo, J., Yang, B., Gossmann, H.-J.L., Frei, M., Chu, S.N.G., Mannaerts, J.P., Sergent, M., Hong, M., Ng, K., Bude, J., IEEE Electron Device Lett. 24, 209 (2003).CrossRefGoogle Scholar
32Ye, P.D., Yang, B., Ng, K., Bude, J., Wilk, G.D., Halder, S., Hwang, J.C.M., Appl. Phys. Lett. 86, 063501 (2005).CrossRefGoogle Scholar
33Kobayashi, M., Chen, P.T., Sun, Y., Goel, N., Majhi, P., Garner, M., Tsai, W., Pianetta, P., Nishi, Y., Appl. Phys. Lett. 93, 182103 (2008).CrossRefGoogle Scholar
34Passlack, M., Hong, M., Mannaerts, J.P., Appl. Phys. Lett. 68, 1099 (1996).CrossRefGoogle Scholar
35Passlack, M., Hong, M., Mannaerts, J.P., Opila, R.L., Chu, S.N.G., Moriya, N., Ren, F., Kwo, J.R., IEEE Trans. Electron Devices 44, 214 (1997).CrossRefGoogle Scholar
36Hong, M., Kwo, J., Kortan, A.R., Mannaerts, J.P., Sergent, A.M., Science 283, 1897 (1999).CrossRefGoogle Scholar
37Boos, J.B., Bennett, B.R., Papanicolaou, N.A., Ancona, M.G., Champlain, J.G., Bass, R., Shanabrook, B.V., Electron. Lett. 43, 15 (2007).CrossRefGoogle Scholar
38Radosavljevic, M., Ashley, T., Andreev, A., Coomber, S.D., Dewey, G., Emeny, M.T., Fearn, M., Hayes, D.G., Hilton, K.P., Hudait, M.K., Jefferies, R., Martin, T., Pillarisetty, R., Rachmady, W., Rakshit, T., Smith, S.J., Uren, M.J., Wallis, D.J., Wilding, P.J., Chau, R., IEDM Tech. Dig. (IEEE Piscataway) 727 (2008).Google Scholar
39Nakaharai, S., Tezuka, T., Sugiyama, N., Moriyama, Y., Takagi, S., Appl. Phys. Lett. 83, 3516 (2003).CrossRefGoogle Scholar
40Hudait, M.K., Dewey, G., Datta, S., Fastenau, J.M., Kavalieros, J., Liu, W.K., Lubyshev, D., Pillarisetty, R., Rachmady, W., Radosavljevic, M., Rakshit, T., Chau, R., IEDM Tech. Dig. (IEEE Piscataway) 625 (2007).Google Scholar
41Shichijo, M., Nakane, R., Sugahara, S., Takagi, S., Jpn. J. Appl. Phys. 46, 5930 (2007).CrossRefGoogle Scholar
42Passlack, M., Heyns, M., Thayne, I., Compd. Semicond. 21 (May 2008).Google Scholar
43Chau, R., Proceedings of the CS MANTECH Conference, Chicago, IL, 1417 April 2008.Google Scholar