Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:36:15.002Z Has data issue: false hasContentIssue false

Two-step deposition method for high-efficiency perovskite solar cells

Published online by Cambridge University Press:  07 August 2015

Jin-Wook Lee
Affiliation:
Department of Energy Science, Sungkyunkwan University, South Korea; [email protected]
Nam-Gyu Park
Affiliation:
School of Chemical Engineering, Sungkyunkwan University, South Korea; [email protected]
Get access

Abstract

Perovskite solar cells based on organolead halide perovskite light absorbers have been considered a promising photovoltaic technology due to their superb power-conversion efficiency along with cheap material cost. Since the first work on long-term durable solid-state perovskite solar cells, a tremendous volume of research on perovskite solar cells has been carried out. A high photovoltaic performance is mainly attributed to the high-quality CH3NH3PbI3 (MAPbI3) material that is strongly dependent on the fabrication method used. MAPbI3 can be prepared by either a single-step procedure or a sequential two-step deposition technique. The two-step method was found, in general, to show better coverage, morphology, and infiltration into a mesoporous oxide layer, which led to high-quality perovskites with desirable optoelectronic properties and thereby high-efficiency perovskite solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weber, D., Z. Naturforsch. B: J. Chem. Sci. 33b, 1443 (1978).CrossRefGoogle Scholar
Weber, D., Z. Naturforsch. B: J. Chem. Sci. 33b, 862 (1978).CrossRefGoogle Scholar
Mitzi, D.B., Feild, C.A., Harrison, W.T.A., Guloy, A.M., Nature 369, 467 (1994).CrossRefGoogle Scholar
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G., Nanoscale 3, 4088 (2011).CrossRefGoogle Scholar
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G., Sci. Rep. 2, 591 (2012).CrossRefGoogle Scholar
National Renewable Energy Laboratory, Best Research-Cell Efficiencies; http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.Google Scholar
Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaislkar, S., Sum, T.C., Science 342, 344 (2013).Google Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J., Science 342, 341 (2013).CrossRefGoogle Scholar
Jung, H.S., Park, N.-G., Small 11, 10 (2015).CrossRefGoogle Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338, 643 (2012).Google Scholar
Liang, K., Mitzi, D.B., Prikas, M.T., Chem. Mater. 10, 403 (1998).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M., Nature 499, 316 (2013).CrossRefGoogle Scholar
Im, J.-H., Kim, H.-S., Park, N.-G., APL Mater. 2, 081510 (2014).Google Scholar
Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G., Nat. Nanotechnol. 9, 927 (2014).Google Scholar
Liu, M., Johnston, M.B., Snaith, H.J., Nature 501, 395 (2013).CrossRefGoogle Scholar
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y., J. Am. Chem. Soc. 136, 622 (2014).Google Scholar
Chen, C.-W., Kang, H.-W., Hsiao, S.-Y., Yang, P.-F., Chiang, K.-M., Lin, H.-W., Adv. Mater. 26, 6647 (2014).CrossRefGoogle Scholar
Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Grätzel, M., White, T.J., J. Mater. Chem. A 1, 5628 (2013).CrossRefGoogle Scholar
Lee, J.-W., Seol, D.-J., Cho, A.-N., Park, N.-G., Adv. Mater. 26, 4991 (2014).Google Scholar