Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T13:50:17.320Z Has data issue: false hasContentIssue false

Transport of Gases in Porous Membranes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The capability of membranes to affect differently, both qualitatively and quantitatively, the transport rates of chemical species of dissimilar chemical structure through their interior space renders them attractive for use in many separation problems. Extensive research efforts have thus been undertaken on the preparation and characterization of membrane materials and the study of the transport processes involved in their use in separation applications. The study of the transport of gaseous species through the pore space of porous membranes and the analysis and understanding of the mechanisms that are involved in this process are a very important, if not the most important, element in the development of membranebased separation processes.

The resistance that a gaseous species encounters as it is transported through the pore space of a porous membrane is a function of its molecular properties, of its interaction with the material that makes up the walls of the pores, and of the membrane pore structure. Gaseous transport in pores can take place through various mechanisms, whose contribution to the overall transport rate of a particular species is, in general, determined by the strength of the interactions of the molecules of that species with the pore walls and by the relative magnitudes of three length scales that characterize the molecular size, the distance between pore walls, and the density of the fluid in the pore space.

Type
Membranes and Membrane Processes
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Koros, W.J. and Fleming, G.K., J. Membr. Sci. 83 (1993) p. 1.CrossRefGoogle Scholar
2.Ruthven, D.M., Principles of Adsorption and Adsorption Processes (John Wiley & Sons, New York, 1984).Google Scholar
3.Kärger, J. and Ruthven, D.M., Diffusion in Zeolites and Other Microporous Solids (John Wiley & Sons, New York, 1992).Google Scholar
4.Jackson, R., Transport in Porous Catalysts (Elsevier, New York, 1997).Google Scholar
5.Van den Berg, G.B. and Smolders, C.A., J. Membr. Sci. 73 (1992) p. 103.CrossRefGoogle Scholar
6.Knudsen, M., The Kinetic Theory of Gases (Jarrold and Sons, Norwich, 1934).Google Scholar
7.Pollard, W.G. and Present, R.D., “On Gaseous Self-Diffusion in Long Capillary Tubes,” Phys. Rev. 73 (1948) p. 762.CrossRefGoogle Scholar
8.Shindo, Y., Hakuta, T., Yoshitome, H., and Inoue, H., J. Chem. Eng. Jpn. 16 (1983) p. 120.CrossRefGoogle Scholar
9.Burganos, V.N. and Sotirchos, S.V., AIChE J. 33 (1987) p. 1678.CrossRefGoogle Scholar
10.Tomadakis, M.M. and Sotirchos, S.V., AIChE J. 39 (1993) p. 397.CrossRefGoogle Scholar
11.Burganos, V.N., J. Chem. Phys. 109 (1998) p. 6772.CrossRefGoogle Scholar
12.Tomadakis, M.M. and Sotirchos, S.V., Chem. Eng. Sci. 48 (1993) p. 3323.CrossRefGoogle Scholar
13.Mason, E. A. and del Castillio, L.F., J. Membr. Sci. 23 (1985) p. 199.CrossRefGoogle Scholar
14.Darken, L., Trans. AIME 174 (1948) p. 184.Google Scholar
15.Krishna, R. and Wesselingh, J. A., Chem. Eng. Sci. 52 (1997) p. 861.CrossRefGoogle Scholar
16.Lee, K.H. and Hwang, S.T., J. Colloid I. Sci. 110 (1986) p. 544.CrossRefGoogle Scholar
17.Uhlhorn, R.J.R., Keizer, K., and Burggraaf, A.J., 259, J. Membr. Sci. 66 (1992) p. 271.CrossRefGoogle Scholar
18.Noble, R.D., Falconer, J.L., Jia, M.D., and Perkins, T.W., J. Membr. Sci. 79 (1993) p. 123.CrossRefGoogle Scholar
19.Serbezov, A.S. and Sotirchos, S.V., Chem. Eng. Sci. 52 (1997) p. 79.CrossRefGoogle Scholar
20.Petropoulos, J.H. and Papadopoulos, G.K., J. Membr. Sci. 101 (1995) p. 127.CrossRefGoogle Scholar
21.Jaguste, D.N. and Bhatia, S., Chem. Eng. Sci. 50 (1995) p. 167.CrossRefGoogle Scholar
22.Kainourgiakis, M.E., Kikkinides, E.S., Stubos, A.K., and Kanellopoulos, N.K., Chem. Eng. Sci. 53 (1998) p. 2353.CrossRefGoogle Scholar
23.Maxwell, J.C., Philos. Trans. R. Soc. London 157 (1966) p. 49.Google Scholar
24.Stefan, J., Sitzber. Akad. Wiss. Wien. 63 (1872) p. 63.Google Scholar
25.Mason, E.A. and Malinauskas, A.P., GCas Transport in Porous Media: The Dusty Gas Model (Elsevier, New York, 1983).Google Scholar
26.Sotirchos, S.V., AIChE J. 35 (1989) p. 1953.CrossRefGoogle Scholar
27.Van den Broeke, L.J.P., Nijhuis, S.A., and Krishna, R., J. Catal. 136 (1992) p. 463.CrossRefGoogle Scholar
28.Yang, R.T. and Sikavitsas, V.I., Chem. Eng. Sci. 50 (1995) p. 3319.CrossRefGoogle Scholar
29.Cui, C.L., Authelin, J.R., Schweich, D., and Villermaux, J., Chem. Eng. Sci. 45 (1990) p. 2611.CrossRefGoogle Scholar
30.Sotirchos, S.V., Chem. Eng. Sci. 47 (1992) p. 1187.CrossRefGoogle Scholar
31.Wicke, E. and Kallenbach, R., Kolloid. Z. 97 (1941) p. 135.CrossRefGoogle Scholar
32.Jobic, H., Bee, M., Kärger, J., Balzer, C., and Julbe, A., Adsorption 1 (1995) p. 197.CrossRefGoogle Scholar
33.Strieder, W. and Aris, R., Variational Methods Applied to Problems of Diffusion and Reaction (Springer-Verlag, New York, 1973).CrossRefGoogle Scholar
34.Burganos, V.N. and Sotirchos, S.V., Chem. Eng. Sci. 44 (1989) p. 2451.CrossRefGoogle Scholar
35.Keffer, D., McCormick, A.V., and Davis, H.T., J. Phys. Chem. 100 (1996) p. 967.CrossRefGoogle Scholar
36.Maginn, E.J., Snurr, R.Q., Bell, A.T., and Theodorou, D.N., Stud. Surf. Sci. Catal. 105 (1997) p. 1851.CrossRefGoogle Scholar