Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T00:34:10.525Z Has data issue: false hasContentIssue false

Translating chitosan to clinical delivery of nucleic acid-based drugs

Published online by Cambridge University Press:  10 January 2014

Carla Pereira Gomes
Affiliation:
Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, Portugal; [email protected]
Cátia Daniela Ferreira Lopes
Affiliation:
Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, Portugal; [email protected]
Pedro Miguel Duarte Moreno
Affiliation:
Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, Portugal; [email protected]
Aida Varela-Moreira
Affiliation:
Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, Portugal; [email protected]
Maria José Alonso
Affiliation:
CIMUS Research Center, School of Pharmacy, University of Santiago de Compostela, Spain; [email protected]
Ana Paula Pêgo
Affiliation:
Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, Portugal; [email protected]
Get access

Abstract

A number of systems based on synthetic molecules, among them cationic liposomes and poly(ethylene imine)-based polymers, have been proposed as delivery vehicles for nucleic acids. Some of these systems have even reached the market, ensuring efficient and transient transfection levels in a variety of cell types. However, toxicity issues have limited their application in vivo. In this context, chitosan, a biocompatible and biodegradable polysaccharide, has been proposed as a promising alternative for the delivery of nucleic acid-based molecules. Here we present an overview of the state of the art of chitosan-based vectors for nucleic acid delivery and the most recent data on the in vivo testing of the proposed systems. We additionally express our view on the barriers that might be hampering the translation of this knowledge into clinical practice and the challenges that need to be fulfilled for these promising vehicles to reach patients.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sorlier, P., Denuziere, A., Viton, C., Domard, A., Biomacromolecules 2, 765 (2001).Google Scholar
Kurita, K., Prog. Polym. Sci. 26, 1921 (2001).CrossRefGoogle Scholar
Koping-Hoggard, M., Varum, K.M., Issa, M., Danielsen, S., Christensen, B.E., Stokke, B.T., Artursson, P., Gene Ther. 11, 1441 (2004).Google Scholar
Huang, M., Fong, C.W., Khor, E., Lim, L.Y., J. Controlled Release 106, 391 (2005).Google Scholar
Kannan, M., Nesakumari, M., Rajarathinam, K., Ranjit Singh, A.J.A., Adv. Biol. Res. 4, 10 (2010).Google Scholar
He, B., Wang, L., Wang, J., Li, G., Zhang, S., Biologia 64, 819 (2009).Google Scholar
Varum, K.M., Myhr, M.M., Hjerde, R.J.N., Smidsrod, O., Carbohydr. Res. 299, 99 (1997).Google Scholar
Varum, K.M., Holme, H.K., Izume, M., Stokke, B.T., Smidsrod, O., Biochim. Biophys. Acta 1291, 5 (1996).Google Scholar
Liu, L., Liu, Y., Shin, H.D., Chen, R., Li, J., Du, G., Chen, J., Appl. Microbiol. Biotechnol. 97, 6149 (2013).Google Scholar
Pêgo, A.P., Oliveira, H., Moreno, P.M., in Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment (Springer, UK, 2013).Google Scholar
Uherek, C., Wels, W., Adv. Drug Delivery Rev. 44, 153 (2000).Google Scholar
Johnston, S.A., Talaat, A.M., McGuire, M.J., Arch. Med. Res. 33, 325 (2002).Google Scholar
Remaut, K., Sanders, N.N., Fayazpour, F., Demeester, J., De Smedt, S.C., J. Controlled Release 115, 335 (2006).Google Scholar
Food and Drug Administration, Guidance for Industry (Rockville, MD, 2007).Google Scholar
Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., Fernandes, J.C., Eur. J. Pharm. Biopharm. 57, 1 (2004).Google Scholar
Lee, K.Y., Kwon, I.C., Kim, Y.H., Jo, W.H., Jeong, S.Y., J. Controlled Release 51, 213 (1998).Google Scholar
Csaba, N., Sanchez, A., Fernandez-Megia, E., Novoa-Carballal, R., Alonso, M.J., Eur. J. Pharm. Sci. 23, S55 (2004).Google Scholar
Gan, Q., Wang, T., Cochrane, C., McCarron, P., Colloids Surf. B 44, 65 (2005).CrossRefGoogle Scholar
Mao, S., Sun, W., Kissel, T., Adv. Drug Delivery Rev. 62, 12 (2010).Google Scholar
Buschmann, M.D., Merzouki, A., Lavertu, M., Thibault, M., Jean, M., Darras, V., Adv. Drug Delivery Rev. 65, 1234 (2013).Google Scholar
Mao, H.-Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T., Leong, K.W., J. Controlled Release 70, 399 (2001).Google Scholar
Wong, K., Sun, G., Zhang, X., Dai, H., Liu, Y., He, C., Leong, K.W., Bioconjugate Chem. 17, 152 (2006).CrossRefGoogle Scholar
Jiang, X., Dai, H., Leong, K.W., Goh, S.H., Mao, H.Q., Yang, Y.Y., J. Gene Med. 8, 477 (2006).CrossRefGoogle Scholar
Csaba, N., Koping-Hoggard, M., Fernandez-Megia, E., Novoa-Carballal, R., Riguera, R., Alonso, M.J., J. Biomed. Nanotechnol. 5, 162 (2009).CrossRefGoogle Scholar
Mourya, V.K., Inamdar, N.N., J. Mater. Sci.-Mater. Med. 20, 1057 (2009).Google Scholar
Kim, T.H., Ihm, J.E., Choi, Y.J., Nah, J.W., Cho, C.S., J. Controlled Release 93, 389 (2003).Google Scholar
Moreira, C., Oliveira, H., Pires, L.R., Simões, S., Barbosa, M.A., Pêgo, A.P., Acta Biomater. 5, 2995 (2009).Google Scholar
Hu, F.Q., Zhao, M.D., Yuan, H., You, J., Du, Y.Z., Zeng, S., Int. J. Pharm. 315, 158 (2006).Google Scholar
Oliveira, H., Pires, L.R., Fernandez, R., Martins, M.C.L., Simões, S., Pêgo, A.P., J. Biomed. Mater. Res. Part A 95A, 801 (2010).Google Scholar
Lee, D., Zhang, W., Shirley, S.A., Kong, X., Hellermann, G.R., Lockey, R.F., Mohapatra, S.S., Pharm. Res. 24, 157 (2007).Google Scholar
Wang, B., He, C., Tang, C., Yin, C., Biomaterials 32, 4630 (2011).Google Scholar
Csaba, N., Koping-Hoggard, M., Alonso, M.J., Int. J. Pharm. 382, 205 (2009).Google Scholar
de la Fuente, M., Seijo, B., Alonso, M.J., Nanotechnology 19, 075105 (2008).CrossRefGoogle Scholar
Teijeiro-Osorio, D., Remunan-Lopez, C., Alonso, M.J., Eur. J. Pharm. Biopharm. 71, 257 (2009).Google Scholar
Perez-Martinez, F.C., Guerra, J., Posadas, I., Cena, V., Pharm. Res. 28, 1843 (2011).Google Scholar
Chan, P., Kurisawa, M., Chung, J.E., Yang, Y.Y., Biomaterials 28, 540 (2007).Google Scholar
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., Nature 391, 806 (1998).Google Scholar
Katas, H., Alpar, H.O., J. Controlled Release 115, 216 (2006).Google Scholar
Liu, X., Howard, K.A., Dong, M., Andersen, M.O., Rahbek, U.L., Johnsen, M.G., Hansen, O.C., Besenbacher, F., Kjems, J., Biomaterials 28, 1280 (2007).Google Scholar
Malmo, J., Sorgard, H., Varum, K.M., Strand, S.P., J. Controlled Release 158, 261 (2012).Google Scholar
Alameh, M., Dejesus, D., Jean, M., Darras, V., Thibault, M., Lavertu, M., Buschmann, M.D., Merzouki, A., Int. J. Nanomed. 7, 1399 (2012).Google Scholar
Holzerny, P., Ajdini, B., Heusermann, W., Bruno, K., Schuleit, M., Meinel, L., Keller, M., J. Controlled Release 157, 297 (2012).Google Scholar
Rojanarata, T., Opanasopit, P., Techaarpornkul, S., Ngawhirunpat, T., Ruktanonchai, U., Pharm. Res. 25, 2807 (2008).CrossRefGoogle Scholar
Dehousse, V., Garbacki, N., Jaspart, S., Castagne, D., Piel, G., Colige, A., Evrard, B., Int. J. Biol. Macromol. 46, 342 (2010).Google Scholar
Varkouhi, A.K., Verheul, R.J., Schiffelers, R.M., Lammers, T., Storm, G., Hennink, W.E., Bioconjugate Chem. 21, 2339 (2010).Google Scholar
Noh, S.M., Han, S.E., Shim, G., Lee, K.E., Kim, C.W., Han, S.S., Choi, Y., Kim, Y.K., Kim, W.K., Oh, Y.K., Biomaterials 32, 849 (2011).Google Scholar
Ragelle, H., Vandermeulen, G., Preat, V., J. Controlled Release 172, 207 (2013).Google Scholar
Ravina, M., Cubillo, E., Olmeda, D., Novoa-Carballal, R., Fernandez-Megia, E., Riguera, R., Sanchez, A., Cano, A., Alonso, M.J., Pharm. Res. 27, 2544 (2010).Google Scholar
Zamecnik, P.C., Stephenson, M.L., Proc. Natl. Acad. Sci. U.S.A. 75, 280 (1978).Google Scholar
Straarup, E.M., Fisker, N., Hedtjarn, M., Lindholm, M.W., Rosenbohm, C., Aarup, V., Hansen, H.F., Orum, H., Hansen, J.B., Koch, T., Nucleic Acids Res. 38, 7100 (2010).Google Scholar
Kim, S.T., Kim, C.K., Biomaterials 28, 3360 (2007).Google Scholar
Gao, S., Chen, J., Dong, L., Ding, Z., Yang, Y.H., Zhang, J., Eur. J. Pharm. Biopharm. 60, 327 (2005).Google Scholar
Hong, H.J., Jin, S.E., Park, J.S., Ahn, W.S., Kim, C.K., Biomaterials 29, 4831 (2008).Google Scholar
Gazori, T., Khoshayand, M.R., Azizi, E., Yazdizade, P., Nomani, A., Haririan, I., Carbohydr. Polym. 77, 599 (2009).CrossRefGoogle Scholar
Azizi, E., Namazi, A., Haririan, I., Fouladdel, S., Khoshayand, M.R., Shotorbani, P.Y., Nomani, A., Gazori, T., Int. J. Nanomed. 5, 455 (2010).Google Scholar
Gazori, T., Haririan, I., Fouladdel, S., Namazi, A., Nomani, A., Azizi, E., Carbohydr. Polym. 80, 6 (2010).Google Scholar
Dung, T.H., Lee, S.R., Han, S.D., Kim, S.J., Ju, Y.M., Kim, M.S., Yoo, H., J. Nanosci. Nanotechnol. 7, 3695 (2007).Google Scholar
Ozbas-Turan, S., Akbuga, J., Sezer, A.D., Oligonucleotides 20, 147 (2010).Google Scholar
Talaei, F., Azizi, E., Dinarvand, R., Atyabi, F., Int. J. Nanomed. 6, 1963 (2011).Google Scholar
Kai, E., Ochiya, T., Pharm. Res. 21, 838 (2004).Google Scholar
Jiang, H.L., Xu, C.X., Kim, Y.K., Arote, R., Jere, D., Lim, H.T., Cho, M.H., Cho, C.S., Biomaterials 30, 5844 (2009).Google Scholar
de la Fuente, M., Seijo, B., Alonso, M.J., Invest. Ophthalmol. Vis. Sci. 49, 2016 (2008).CrossRefGoogle Scholar
de la Fuente, M., Seijo, B., Alonso, M.J., Gene Ther. 15, 668 (2008).Google Scholar
Roy, K., Mao, H.Q., Huang, S.K., Leong, K.W., Nat. Med. 5, 387 (1999).Google Scholar
Bivas-Benita, M., Laloup, M., Versteyhe, S., Dewit, J., De Braekeleer, J., Jongert, E., Borchard, G., Int. J. Pharm. 266, 17 (2003).CrossRefGoogle Scholar
Kumar, M., Behera, A.K., Lockey, R.F., Zhang, J., Bhullar, G., De La Cruz, C.P., Chen, L.C., Leong, K.W., Huang, S.K., Mohapatra, S.S., Hum. Gene Ther. 13, 1415 (2002).Google Scholar
Iqbal, M., Lin, W., Jabbal-Gill, I., Davis, S.S., Steward, M.W., Illum, L., Vaccine 21, 1478 (2003).Google Scholar
Zhang, W., Yang, H., Kong, X., Mohapatra, S., San Juan-Vergara, H., Hellermann, G., Behera, S., Singam, R., Lockey, R.F., Mohapatra, S.S., Nat. Med. 11, 56 (2005).Google Scholar
Kong, X., Zhang, W., Lockey, R.F., Auais, A., Piedimonte, G., Mohapatra, S.S., Genet. Vaccines Ther. 5, 4 (2007).Google Scholar
Pille, J.Y., Li, H., Blot, E., Bertrand, J.R., Pritchard, L.L., Opolon, P., Maksimenko, A., Lu, H., Vannier, J.P., Soria, J., Malvy, C., Soria, C., Hum. Gene Ther. 17, 1019 (2006).Google Scholar
http://clinicaltrials.gov (data from September 2013).Google Scholar
Barbosa, M.A., Pêgo, A.P., Amaral, I.F., in Comprehensive Biomaterials, Ducheyne, P., Healy, K., Hutmacher, D.E., Grainger, D.W., Kirkpatrick, C.J., Eds. (Elsevier, London, UK, 2011), pp. 221237.Google Scholar
Shaji, J., Jain, V., Lodha, S., Kundnani, P.K.M., Int. J. Pharm. Appl. Sci. 1, 11 (2010).Google Scholar
Xu, W., Shen, Y., Jiang, Z., Wang, Y., Chu, Y., Xiong, S., Vaccine 22, 3603 (2004).Google Scholar
Bivas-Benita, M., van Meijgaarden, K.E., Franken, K.L., Junginger, H.E., Borchard, G., Ottenhoff, T.H., Geluk, A., Vaccine 22, 1609 (2004).Google Scholar
Raghuwanshi, D., Mishra, V., Das, D., Kaur, K., Suresh, M.R., Mol. Pharm. 9, 946 (2012).Google Scholar
Oliveira, C.R., Rezende, C.M., Silva, M.R., Borges, O.M., Pêgo, A.P., Goes, A.M., Sci. World J. 2012, 938457 (2012).Google Scholar
Chew, J.L., Wolfowicz, C.B., Mao, H.Q., Leong, K.W., Chua, K.Y., Vaccine 21, 2720 (2003).Google Scholar
Kumar, M., Kong, X., Behera, A.K., Hellermann, G.R., Lockey, R.F., Mohapatra, S.S., Genet. Vaccines Ther. 1, 3 (2003).Google Scholar
Li, G.P., Liu, Z.G., Liao, B., Zhong, N.S., Cell Mol. Immunol. 6, 45 (2009).Google Scholar
Dass, C.R., Contreras, K.G., Dunstan, D.E., Choong, P.F., Biomaterials 28, 3026 (2007).Google Scholar
Cheng, M., Li, Q., Wan, T., Hong, X., Chen, H., He, B., Cheng, Z., Xu, H., Ye, T., Zha, B., Wu, J., Zhou, R., J. Biomed. Mater. Res. Part B 99, 70 (2011).Google Scholar
Zhao, Q.Q., Hu, Y.L., Zhou, Y., Li, N., Han, M., Tang, G.P., Qiu, F., Tabata, Y., Gao, J.Q., Int. J. Nanomed. 7, 3191 (2012).Google Scholar
Feng, S., Agoulnik, I.U., Truong, A., Li, Z., Creighton, C.J., Kaftanovskaya, E.M., Pereira, R., Han, H.D., Lopez-Berestein, G., Klonisch, T., Ittmann, M.M., Sood, A.K., Agoulnik, A.I., Endocrinol. Relat. Cancer 17, 1021 (2010).Google Scholar
Kim, H.S., Han, H.D., Armaiz-Pena, G.N., Stone, R.L., Nam, E.J., Lee, J.W., Shahzad, M.M., Nick, A.M., Lee, S.J., Roh, J.W., Nishimura, M., Mangala, L.S., Bottsford-Miller, J., Gallick, G.E., Lopez-Berestein, G., Sood, A.K., Clin. Cancer Res. 17, 1713 (2011).Google Scholar
Han, H.D., Mora, E.M., Roh, J.W., Nishimura, M., Lee, S.J., Stone, R.L., Bar-Eli, M., Lopez-Berestein, G., Sood, A.K., Cancer Biol. Ther. 11, 839 (2011).Google Scholar
Huang, Z., Dong, L., Chen, J., Gao, F., Zhang, Z., Chen, J., Zhang, J., Life Sci. 91, 1207 (2012).Google Scholar
Lee, S.J., Huh, M.S., Lee, S.Y., Min, S., Lee, S., Koo, H., Chu, J.U., Lee, K.E., Jeon, H., Choi, Y., Choi, K., Byun, Y., Jeong, S.Y., Park, K., Kim, K., Kwon, I.C., Angew. Chem. Int. Ed. 51, 7203 (2012).Google Scholar
Bowman, K., Sarkar, R., Raut, S., Leong, K.W., J. Controlled Release 132, 252 (2008).Google Scholar
Howard, K.A., Paludan, S.R., Behlke, M.A., Besenbacher, F., Deleuran, B., Kjems, J., Mol. Ther. 17, 162 (2009).Google Scholar
Jean, M., Alameh, M., Buschmann, M.D., Merzouki, A., Gene Ther. 18, 807 (2011).Google Scholar
Council of Europe, European Pharmacopeia (Strasbourg, 2002).Google Scholar
United States Pharmacopeia and the National Formulary, United States Pharmacopeial Convention (Baltimore, United Book Press, 2011), vol. 29, p. 5361.Google Scholar
US Food and Drug Administration Gras Notice Inventory (consulted online 2013: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm).Google Scholar
Boateng, J.S., Matthews, K.H., Stevens, H.N., Eccleston, G.M., J. Pharm. Sci. 97, 2892 (2008).CrossRefGoogle Scholar
Struszczyk, M.H., “Global Requirements for Medical Applications of Chitin and its Derivatives,” in Monograph XI (Polish Chitin Society, Poland, 2006).Google Scholar
ASTM Standard F2103, “Standard Guide for Characterization and Testing of Chitosan Salts as Starting Materials Intended for Use in Biomedical and Tissue-Engineered Medical Product Applications” (ASTM International, West Conshohocken, PA, 2011).Google Scholar
Varma, A.J., Deshpande, S.V., Kennedy, J.F., Carbohydr. Polym. 55, 77 (2004).Google Scholar
Bansal, V., Sharma, P.K., Sharma, N., Pal, O.P., Malviya, R., Adv. Biol. Res. 5, 28 (2011).Google Scholar
Buschmann, M.D., Merzouki, A., Lavertu, M., Thibault, M., Jean, M., Darras, V., Adv. Drug Delivery Rev. (2013), accepted for publication.Google Scholar
Skaugrud, O., Hagen, A., Borgersen, B., Dornish, M., Biotechnol. Genet. Eng. Rev. 16, 23 (1999).Google Scholar
ASTM Standard F2260, 2012e1, “Standard Test Method for Determining Degree of Deacetylation in Chitosan Salts by Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy” (ASTM International, West Conshohocken, PA, 2012).Google Scholar
Varum, K.M., Anthonsen, M.W., Grasdalen, H., Smidsrod, O., Carbohydr. Res. 211, 17 (1991).Google Scholar
ASTM Standard F2602, 2008e1, “Standard Test Method for Determining the Molar Mass of Chitosan and Chitosan Salts by Size Exclusion Chromatography with Multi angle Light Scattering Detection (SEC MALS)” (ASTM International, West Conshohocken, PA, 2008).Google Scholar
US Food and Drug Administration, “Guidance for Industry - Pyrogen and Endotoxins Testing” (2012); www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM310098.pdf.Google Scholar
Pires, L.R., Oliveira, H., Barrias, C.C., Sampaio, P., Pereira, A.J., Maiato, H., Simoes, S., Pêgo, A.P., Nanomedicine 6, 1499 (2011).Google Scholar
Chellat, F., Tabrizian, M., Dumitriu, S., Chornet, E., Rivard, C.H., Yahia, L., J. Biomed. Mater. Res. 53, 592 (2000).Google Scholar