Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:32:22.002Z Has data issue: false hasContentIssue false

Topological insulator nanostructures

Published online by Cambridge University Press:  15 October 2014

Seung Sae Hong
Affiliation:
Department of Applied Physics, Stanford University, USA; [email protected]
Desheng Kong
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; [email protected]
Yi Cui
Affiliation:
Department of Materials Science and Engineering, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, USA; [email protected]
Get access

Abstract

Electrons in topological insulators possess unique electronic band structures and spin properties, promising a novel route to engineer material properties for electronics and energy science. Enhancing the surface state signal in electron transport is critical for both fundamental study of the surface states and future applications. Nanostructures of topological insulators naturally have large surface-to-volume ratios, effectively increasing the surface transport compared to the bulk contribution. Moreover, the unique morphology of topological insulator nanostructures results in various quantum effects of electronic states, which can tailor the surface band via quantum confinement. Here we review recent progress in topological insulator nanostructures. Material design and electron transport of topological insulator nanostructures are introduced, with an emphasis on the unique properties of nanostructures. A few examples of applications and future perspective in using these nanostructures are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hasan, M.Z., Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010).Google Scholar
Qi, X.-L., Zhang, S.-C., Rev. Mod. Phys. 83, 1057 (2011).Google Scholar
Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y.S., Cava, R.J., Hasan, M.Z., Nature 452, 970 (2008).Google Scholar
Zhang, H., Liu, C.X., Qi, X.L., Dai, X., Fang, Z., Zhang, S.C., Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z., Nat. Phys. 5, 398 (2009).Google Scholar
Chen, Y., Analytis, J.G., Chu, J.-H., Liu, Z.K., Mo, S.-K., Qi, X.L., Zhang, H.J., Lu, D.H., Dai, X., Fang, Z., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z.-X., Science 325, 178 (2009).CrossRefGoogle Scholar
Roushan, P., Seo, J., Parker, C.V., Hor, Y.S., Hsieh, D., Qian, D., Richardella, A., Hasan, M.Z., Cava, R.J., Yazdani, A., Nature 460, 1106 (2009).Google Scholar
Zhang, T., Cheng, P., Chen, X., Jia, J.F., Ma, X., He, K., Wang, L., Zhang, H., Dai, X., Fang, Z., Xie, X., Xue, Q.K., Phys. Rev. Lett. 103, 266803 (2009).Google Scholar
Hanaguri, T., Igarashi, K., Kawamura, M., Takagi, H., Sasagawa, T., Phys. Rev. B: Condens. Matter 82, 081305 (2010).Google Scholar
Analytis, J.G., Chu, J.-H., Chen, Y., Corredor, F., McDonald, R.D., Shen, Z.X., Fisher, I.R., Phys. Rev. B: Condens. Matter 81, 205407 (2010).CrossRefGoogle Scholar
Analytis, J.G., McDonald, R.D., Riggs, S.C., Chu, J.-H., Boebinger, G.S., Fisher, I.R., Nat. Phys. 6, 960 (2010).Google Scholar
Xiong, J., Petersen, A.C., Qu, D., Hor, Y.S., Cava, R.J., Ong, N.P., Physica E 44, 917 (2012).Google Scholar
Ren, Z., Taskin, A.A., Sasaki, S., Segawa, K., Ando, Y., Phys. Rev. B: Condens. Matter 82, 241306 (2010).Google Scholar
Peng, H., Lai, K., Kong, D., Meister, S., Chen, Y., Qi, X.L., Zhang, S.C., Shen, Z.X., Cui, Y., Nat. Mater. 9, 225 (2010).Google Scholar
Kong, D., Randel, J.C., Peng, H., Cha, J.J., Meister, S., Lai, K., Chen, Y., Shen, Z.-X., Manoharan, H.C., Cui, Y., Nano Lett. 10 329 (2010).Google Scholar
Kong, D., Chen, Y., Cha, J.J., Zhang, Q., Analytis, J.G., Lai, K., Liu, Z., Hong, S.S., Koski, K.J., Mo, S.-K., Hussain, Z., Fisher, I.R., Shen, Z.-X., Cui, Y., Nat. Nanotechnol. 6, 705 (2011).Google Scholar
Hong, S.S., Cha, J.J., Kong, D., Cui, Y., Nat. Commun. 3, 757 (2012).Google Scholar
Hong, S.S., Zhang, Y., Cha, J.J., Qi, X.L., Cui, Y., Nano Lett. 14, 2815 (2014).Google Scholar
Navrátil, J., Horák, J., Plecháček, T., Kamba, S., Lošt’ák, P., Dyck, J.S., Chen, W., Uher, C., J. Solid State Chem. 177, 1704 (2004).Google Scholar
Wang, G., Zhu, X.-G., Sun, Y.-Y., Li, Y.-Y., Zhang, T., Wen, J., Chen, X., He, K., Wang, L.-L., Ma, X.-C., Jia, J.-F., Zhang, S.B., Xue, Q.-K., Adv. Mater. 23, 2929 (2011).CrossRefGoogle Scholar
Jiang, Y., Sun, Y.Y., Chen, M., Wang, Y., Li, Z., Song, C., He, K., Wang, L., Chen, X., Xue, Q.-K., Ma, X., Zhang, S.B., Phys. Rev. Lett. 108, 066809 (2012).Google Scholar
Kong, D., Cha, J.J., Lai, K., Peng, H., Analytis, J.G., Meister, S., Chen, Y., Zhang, H.-J., Fisher, I.R., Shen, Z.-X., Cui, Y., ACS Nano 5, 4698 (2011).Google Scholar
Benia, H.M., Lin, C., Kern, K., Ast, C.R., Phys. Rev. Lett. 107, 177602 (2011).Google Scholar
Chen, C., He, S., Weng, H., Zhang, W., Zhao, L., Liu, H., Jia, X., Mou, D., Liu, S., He, J., Peng, Y., Feng, Y., Xie, Z., Liu, G., Dong, X., Zhang, J., Wang, X., Peng, Q., Wang, Z., Zhang, S., Yang, F., Chen, C., Xu, Z., Dai, X., Fang, Z., Zhou, X.J., Proc. Natl. Acad. Sci. U.S.A. (2012), doi:10.1073/pnas.1115555109.Google Scholar
Kane, C.L., Mele, E.J., Phys. Rev. Lett. 95, 146802 (2005).Google Scholar
Bernevig, B.A., Hughes, T.L., Zhang, S.-C., Science 314, 1757 (2006).Google Scholar
König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.-L., Zhang, S.-C., Science 318, 766 (2007).Google Scholar
Fu, L., Kane, C.L., Mele, E.J., Phys. Rev. Lett. 98, 106803 (2007).Google Scholar
Moore, J.E., Balents, L., Phys. Rev. B: Condens. Matter 75, 121306 (2007).Google Scholar
Roy, R., Phys. Rev. B: Condens. Matter 79, 195321 (2009).Google Scholar
Fu, L., Phys. Rev. Lett. 106, 106802 (2011).Google Scholar
Dziawa, P., Kowalski, B.J., Dybko, K., Buczko, R., Szczerbakow, A., Szot, M., Łusakowska, E., Balasubramanian, T., Wojek, B.M., Berntsen, M.H., Tjernberg, O., Story, T., Nat. Mater. 11, 1023 (2012).Google Scholar
Xu, S.-Y., Liu, C., Alidoust, N., Neupane, M., Qian, D., Belopolski, I., Denlinger, J.D., Wang, Y.J., Lin, H., Wray, L.A., Landolt, G., Slomski, B., Dil, J.H., Marcinkova, A., Morosan, E., Gibson, Q., Sankar, R., Chou, F.C., Cava, R.J., Bansil, A., Hasan, M.Z., Nat. Commun. 3, 1192 (2012).Google Scholar
Tanaka, Y., Ren, Z., Sato, T., Nakayama, K., Souma, S., Takahashi, T., Segawa, K., Ando, Y., Nat. Phys. 8, 800 (2012).CrossRefGoogle Scholar
Hsieh, T.H., Lin, H., Liu, J., Duan, W., Bansil, A., Fu, L., Nat. Commun. 3, 982 (2012).CrossRefGoogle Scholar
Ren, Z., Taskin, A.A., Sasaki, S., Segawa, K., Ando, Y., Phys. Rev. B: Condens. Matter 84, 165311 (2011).Google Scholar
Arakane, T., Sato, T., Souma, S., Kosaka, K., Nakayama, K., Komatsu, M., Takahashi, T., Ren, Z., Segawa, K., Ando, Y., Nat. Commun. 3, 636 (2012).Google Scholar
Cha, J.J., Kong, D., Hong, S.S., Analytis, J.G., Lai, K., Cui, Y., Nano Lett. 12, 1107 (2012).Google Scholar
Zhang, J., Chang, C.-Z., Zhang, Z., Wen, J., Feng, X., Li, K., Liu, M., He, K., Wang, L., Chen, X., Xue, Q.-K., Ma, X., Wang, Y., Nat. Commun. 2, 574 (2011).Google Scholar
Checkelsky, J.G., Hor, Y.S., Cava, R.J., Ong, N.P., Phys. Rev. Lett. 106, 196801 (2011).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).Google Scholar
Hong, S.S., Kundhikanjana, W., Cha, J.J., Lai, K., Kong, D., Meister, S., Kelly, M.A., Shen, Z.-X., Cui, Y., Nano Lett. 10, 3118 (2010).Google Scholar
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V., Science 331, 568 (2011).Google Scholar
Xiu, F., He, L., Wang, Y., Cheng, L., Chang, L.-T., Lang, M., Huang, G., Kou, X., Zhou, Y., Jiang, X., Chen, Z., Zou, J., Shailos, A., Wang, K., Nat. Nanotechnol. 6, 216 (2011).Google Scholar
Kong, D., Dang, W., Cha, J.J., Li, H., Meister, S., Peng, H., Liu, Z., Cui, Y., Nano Lett. 10, 2245 (2010).Google Scholar
Kong, D., Koski, K.J., Cha, J.J., Hong, S.S., Cui, Y., Nano Lett. 13, 632 (2013).Google Scholar
Peng, H., Dang, W., Cao, J., Chen, Y., Wu, D., Zheng, W., Li, H., Shen, Z.-X., Liu, Z., Nat. Chem. 4, 281 (2012).Google Scholar
Chen, X., Ma, X.-C., He, K., Jia, J.-F., Xue, Q.-K., Adv. Mater. 23, 1162 (2011).Google Scholar
Taskin, A.A., Sasaki, S., Segawa, K., Ando, Y., Phys. Rev. Lett. 109, 066803 (2012).Google Scholar
Dang, W., Peng, H., Li, H., Wang, P., Liu, Z., Nano Lett. 10, 2870 (2010).Google Scholar
Kou, X.F., He, L., Xiu, F.X., Lang, M.R., Liao, Z.M., Wang, Y., Fedorov, A.V., Yu, X.X., Tang, J.S., Huang, G., Jiang, X.W., Zhu, J.F., Zou, J., Wang, K., Appl. Phys. Lett. 98, 242102 (2011).Google Scholar
Safdar, M., Wang, Q., Mirza, M., Wang, Z., Xu, K., He, J., Nano Lett. 13, 5344 (2013).Google Scholar
Assaf, B.A., Katmis, F., Wei, P., Satpati, B., Zhang, Z., Bennett, S.P., Harris, V.G., Moodera, J.S., Heiman, D., in press (2014), http://arxiv.org/abs/1403.1810.Google Scholar
Sacepe, B., Oostinga, J.B., Li, J., Ubaldini, A., Couto, N.J., Giannini, E., Morpurgo, A.F., Nat. Commun. 2, 575 (2011).Google Scholar
Fang, L., Jia, Y., Miller, D.J., Latimer, M.L., Xiao, Z.L., Welp, U., Crabtree, G.W., Kwok, W.K., Nano Lett. 12, 6164 (2012).Google Scholar
Gehring, P., Gao, B.F., Burghard, M., Kern, K., Nano Lett. 12, 5137 (2012).Google Scholar
Webb, R.A., Washburn, S., Umbach, C.P., Laibowitz, R.B., Phys. Rev. Lett. 54, 2696 (1985).Google Scholar
Bachtold, A., Strunk, C., Salvetat, J.P., Bonard, J.M., Forro, L., Nussbaumer, T., Schonenberger, C., Nature 397, 673 (1999).Google Scholar
Lee, S., In, J., Yoo, Y., Jo, Y., Park, Y.C., Kim, H.-J., Koo, H.C., Kim, J., Kim, B., Wang, K.L., Nano Lett. 12, 4194 (2012).Google Scholar
Bardarson, J.H., Brouwer, P.W., Moore, J.E., Phys. Rev. Lett. 105, 156803 (2010).Google Scholar
Zhang, Y., Vishwanath, A., Phys. Rev. Lett. 105, 206601 (2010).Google Scholar
Kitaev, A.Y., Phys. Usp. 44, 131 (2001).Google Scholar
Fu, L., Kane, C.L., Phys. Rev. Lett. 100, 096407 (2008).Google Scholar
Alicea, J., Rep. Prog. Phys. 75, 076501 (2012).Google Scholar
Zhang, D., Wang, J., DaSilva, A.M., Lee, J.S., Gutierrez, H.R., Chan, M.H.W., Jain, J., Samarth, N., Phys. Rev. B: Condens. Matter 84, 165120 (2011).Google Scholar
Veldhorst, M., Snelder, M., Hoek, M., Gang, T., Guduru, V.K., Wang, X.L., Zeitler, U., van der Wiel, W.G., Golubov, A.A., Hilgenkamp, H., Brinkman, A., Nat. Mater. 11, 417 (2012).Google Scholar
Williams, J.R., Bestwick, A.J., Gallagher, P., Hong, S.S., Cui, Y., Bleich, A.S., Analytis, J.G., Fisher, I.R., Goldhaber-Gordon, D., Phys. Rev. Lett. 109, 056803 (2012).Google Scholar
Hor, Y.S., Richardella, A., Roushan, P., Xia, Y., Checkelsky, J.G., Yazdani, A., Hasan, M.Z., Ong, N.P., Cava, R.J., Phys. Rev. B: Condens. Matter 79, 195208 (2009).Google Scholar
Pettes, M.T., Maassen, J., Jo, I., Lundstrom, M.S., Shi, L., Nano Lett. 13, 5316 (2013).CrossRefGoogle Scholar
Xu, Y., Gan, Z., Zhang, S.-C. (2014) (forthcoming), arXiv:1403.3137.Google Scholar
Geim, A.K., Grigorieva, I.V., Nature 499, 419 (2013).Google Scholar
Koski, K.J., Cha, J.J., Reed, B.W., Wessells, C.D., Kong, D., Cui, Y., JACS 134, 7584 (2012).Google Scholar
Koski, K.J., Wessells, C.D., Reed, B.W., Cha, J.J., Kong, D., Cui, Y., JACS 134, 13773 (2012).Google Scholar
Cha, J.J., Koski, K.J., Huang, K.C.Y., Wang, K.X., Luo, W., Kong, D., Yu, Z., Fan, S., Brongersma, M.L., Cui, Y., Nano Lett. 13, 5913 (2013).Google Scholar