Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:54:10.149Z Has data issue: false hasContentIssue false

Topological engineering of doped photonic glasses

Published online by Cambridge University Press:  10 January 2017

Shifeng Zhou
Affiliation:
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, China; [email protected]
Jianrong Qiu
Affiliation:
College of Optical Science and Engineering, Zhejiang University, China; [email protected]
Get access

Abstract

The development of doped photonic glass is of fundamental importance for various applications, including telecommunication, lasers, and photovoltaics. Despite the great advances in doping techniques, a long-standing barrier remains concerning how to gain better control over the properties of active dopants in disordered systems. Here, we provide a brief overview of recent progress on the engineering of the chemical environment and chemical state of dopants in glass by tuning the topological features, including sublattices and packing manner of the network. The methods allow us to finely tune the chemical state of active dopants over a wide range of length scales, from dispersed ions to aggregated clusters to nanoparticles, and also offer new opportunities to engineer the local crystal field around active dopants. This inherent structure-based strategy leads to intriguing optical phenomena such as tunable luminescence and notable enhancements in radiative transition probability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Snitzer, E., Phys. Rev. Lett. 7, 444 (1961).Google Scholar
Balda, R., Fernandez, J., Illarramendi, M., Phys. Rev. B Condens. Matter 44, 4759 (1991).Google Scholar
Samson, B.N., Pinckney, L.R., Wang, J., Beall, G.H., Borrelli, N.F., Opt. Lett. 27, 1309 (2002).Google Scholar
Fujimoto, Y., Nakatsuka, M., Jpn. J. Appl. Phys. 40, 279 (2001).Google Scholar
Zhou, S., Feng, G., Wu, B., Xu, S., Qiu, J., J. Phys. D Appl. Phys. 40, 2472 (2007).CrossRefGoogle Scholar
Zhou, S., Dong, H., Zeng, H., Feng, G., Yang, H., Zhu, B., Qiu, J., Appl. Phys. Lett. 91, 061919 (2007).Google Scholar
Zhou, S., Feng, G., Wu, B., Jiang, N., Xu, S., Qiu, J., J. Phys. Chem. C 111, 7335 (2007).Google Scholar
Zhou, S., Jiang, N., Yang, H., Zhu, B., Ye, S., Lakshminarayana, G., Hao, J., Qiu, J., Adv. Funct. Mater. 18, 1407 (2008).Google Scholar
Zhou, S., Jiang, N., Wu, B., Hao, J., Qiu, J., Adv. Funct. Mater. 19, 2081 (2009).CrossRefGoogle Scholar
Zhou, S., Jiang, N., Miura, K., Tanabe, S., Shimizu, M., Sakakura, M., Shimotsuma, Y., Nishi, M., Qiu, J., Hirao, K., J. Am. Chem. Soc. 132, 17945 (2010).CrossRefGoogle Scholar
Campbell, J.H., Hayden, J.S., Marker, A., Int. J. Appl. Glass Sci. 2, 3 (2011).CrossRefGoogle Scholar
Jackson, S.D., Nat. Photonics 6, 423 (2012).CrossRefGoogle Scholar
Arai, K., Namikawa, H., Kumata, K., Honda, T., Ishii, Y., J. Appl. Phys. 59, 3430 (1986).Google Scholar
Funabiki, F., Kamiya, T., Hosono, H., J. Ceram. Soc. Jpn. 120, 447 (2012).Google Scholar
Auzel, F., Goldner, P., Opt. Mater. 16, 93 (2001).Google Scholar
Zhou, S., Guo, Q., Inoue, H., Ye, Q., Masuno, A., Zheng, B., Yu, Y., Qiu, J., Adv. Mater. 26, 7966 (2014).Google Scholar
Phillips, J.C., J. Non Cryst. Solids 34, 153 (1979).Google Scholar
Smedskjaer, M.M., Mauro, J.C., Yue, Y.Z., Phys. Rev. Lett. 105, 115503 (2010).Google Scholar
Smedskjaer, M.M., Mauro, J.C., Youngman, R.E., Hogue, C.L., Potuzak, M., Yue, Y., J. Phys. Chem. B 15, 12930 (2011).Google Scholar
Hermansen, C., Mauro, J.C., Yue, Y., J. Chem. Phys. 140, 154501 (2014).Google Scholar
Zeng, H., Jiang, Q., Liu, Z., Li, X., Ren, J., Chen, G., Liu, F., Peng, S., J. Phys. Chem. B 118, 5177 (2014).Google Scholar
Wondraczek, L., Mauro, J.C., Eckert, J., Kühn, U., Horbach, J., Deubener, J., Rouxel, T., Adv. Mater. 23, 4578 (2011).Google Scholar
Guo, Q., Xu, B., Tan, D., Wang, J., Zheng, S., Jiang, W., Qiu, J., Zhou, S., Opt. Express 21, 27835 (2013).Google Scholar
Guo, Q., Zheng, B., Xu, B., Yu, Y., Qiu, J., Zhou, S., Opt. Express 21, 15924 (2014).Google Scholar
Zhou, S., Li, C., Yang, G., Bi, G., Xu, B., Hong, Z., Miura, K., Hirao, K., Qiu, J., Adv. Funct. Mater. 23, 5436 (2013).CrossRefGoogle Scholar
Guo, Q., Liu, X., Zhou, S., J. Am. Ceram. Soc. 98, 2976 (2015).Google Scholar
Zhou, S., Dong, H., Zeng, H., Hao, J., Chen, J., Qiu, J., J. Appl. Phys. 103, 103532 (2008).CrossRefGoogle Scholar
Richardson, D.J., Science 330, 327 (2010).Google Scholar
Ballhausen, C.J., Ligand Field Theory (McGraw-Hill, New York, 1962).Google Scholar
Funabiki, F., Matsuishi, S., Hosono, H., J. Phys. Chem. A 115, 5081 (2011).Google Scholar
Zhou, S., Jiang, N., Dong, H., Zeng, H., Hao, J., Qiu, J., Nanotechnology 19 (1), 015702 (2008).Google Scholar
Wu, B., Zhou, S., Ruan, J., Qiao, Y., Chen, D., Zhu, C., Qiu, J., Opt. Express 16, 2508 (2008).Google Scholar
Zhou, S., Hao, J., Qiu, J., J. Am. Ceram. Soc. 94, 2902 (2011).Google Scholar
Zhang, K., Zhou, S., Zhuang, Y., Yang, R., Qiu, J., Opt. Express 20, 8675 (2012).Google Scholar
Yu, Y., Fang, Z., Ma, C., Inoue, H., Yang, G., Zheng, S., Chen, D., Yang, Z., Masuno, A., Orava, J., Zhou, S., Qiu, J., NPG Asia Mater. 8, e318 (2016).Google Scholar