Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T13:50:11.112Z Has data issue: false hasContentIssue false

Three-dimensional lithography by elasto-capillary engineering of filamentary materials

Published online by Cambridge University Press:  11 February 2016

Sameh H. Tawfick
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, USA; [email protected]
José Bico
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, École Supérieure de Physique et de Chimie Industrielles, France; [email protected]
Steven Barcelo
Affiliation:
Hewlett Packard Enterprise, USA; [email protected]
Get access

Abstract

Surface textures with three-dimensional (3D) architectures demonstrate the ability to control interfacial, optical, chemical, and mechanical properties. Potential applications range from device-scale biomolecule sensing to meter-scale optical or nonwetting coatings. In recent years, capillary forming has become a versatile and scalable approach to creating complex geometries at the nano- and micron scales. Surface tension of a liquid can deform straight pillars and assemble them into 3D architectures with predetermined orientation, where short-range adhesion forces stabilize the final forms. A variety of techniques have been demonstrated for carbon nanotubes and polymer filamentary materials to fabricate useful devices and textures. We discuss these materials and processes as well as the underlying elasto-capillary physics. We indicate the need for new simulation tools to design and engineer elasto-capillary transformations and methods to increase their throughput toward scalable manufacturing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liddle, J.A., Gallatin, G.M., Nanoscale 3 (7), 2679 (2011).CrossRefGoogle Scholar
Chu, K.-H., Xiao, R., Wang, E.N., Nat. Mater. 9 (5), 413 (2010).CrossRefGoogle Scholar
Pint, C.L., Takei, K., Kapadia, R., Zheng, M., Ford, A.C., Zhang, J., Jamshidi, A., Bardhan, R., Urban, J.J., Wu, M., Ager, J.W., Oye, M.M., Javey, A., Adv. Energy Mater. 1 (6), 1040 (2011).CrossRefGoogle Scholar
Paxson, A.T., Varanasi, K.K., Nat. Commun. 4, 1492 (2013).CrossRefGoogle Scholar
Gansel, J.K., Thiel, M., Rill, M.S., Decker, M., Bade, K., Saile, V., von Freymann, G., Linden, S., Wegener, M., Science 325 (5947), 1513 (2009).CrossRefGoogle Scholar
Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., Sheng, P., Nat. Commun. 3, 756 (2012).CrossRefGoogle Scholar
Zhao, Y., Belkin, M.A., Alù, A., Nat. Commun. 3, 870 (2012).CrossRefGoogle Scholar
De Volder, M., Hart, A.J., Angew. Chem. Int. Ed. 52 (9), 2412 (2013).CrossRefGoogle Scholar
Roman, B., Bico, J., J. Phys. Condens. Matter 22, 493101 (2010).CrossRefGoogle Scholar
Hu, Y., Lao, Z., Cumming, B.P., Wu, D., Li, J., Liang, H., Chu, J., Huang, W., Gu, M., Proc. Natl. Acad. Sci. U.S.A. 112 (22), 6876 (2015).CrossRefGoogle Scholar
Copic, D., Park, S.J., Tawfick, S., De Volder, M., Hart, A.J., Lab Chip 11 (10), 1831 (2011).CrossRefGoogle Scholar
Hayamizu, Y., Yamada, T., Mizuno, K., Davis, R.C., Futaba, D.N., Yumura, M., Hata, K., Nat. Nanotechnol. 3 (5), 289 (2008).CrossRefGoogle Scholar
Tawfick, S., De Volder, M., Hart, A.J., Langmuir 27 (10), 6389 (2011).CrossRefGoogle Scholar
Vaccaro, P.O., Kubota, K., Fleischmann, T., Saravanan, S., Aida, T., Microelectron. J. 34 (5–8), 447 (2003).CrossRefGoogle Scholar
Guo, X., Li, H., Yeop Ahn, B., Duoss, E.B., Hsia, K.J., Lewis, J.A., Nuzzo, R.G., Proc. Natl. Acad. Sci. U.S.A. 106 (48), 20149 (2009).CrossRefGoogle Scholar
Leong, T.G., Zarafshar, A.M., Gracias, D.H., Small 6 (7), 792 (2010).CrossRefGoogle ScholarPubMed
Whitesides, G.M., Grzybowski, B., Science 295 (5564), 2418 (2002).CrossRefGoogle Scholar
Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M., Nature 393 (6681), 146 (1998).CrossRefGoogle Scholar
Duprat, C., Protiere, S., Beebe, A.Y., Stone, H.A., Nature 482 (7386), 510 (2012).CrossRefGoogle Scholar
Maboudian, R., Howe, R.T., J. Vac. Sci. Technol. B 15 (1), 1 (1997).CrossRefGoogle Scholar
Lambert, P., Mastrangeli, M., Valsamis, J.-B., Degrez, G., Microfluid. Nanofluid. 9 (4–5), 797 (2010).CrossRefGoogle Scholar
Legrain, A., Janson, T.G., Berenschot, J.W., Abelmann, L., Tas, N.R., J. Appl. Phys. 115 (21), 214905 (2014).CrossRefGoogle Scholar
Fan, J.G., Dyer, D., Zhang, G., Zhao, Y.P., Nano Lett. 4 (11), 2133 (2004).CrossRefGoogle Scholar
Pokroy, B., Kang, S.H., Mahadevan, L., Aizenberg, J., Science 323 (5911), 237 (2009).CrossRefGoogle Scholar
Bernardino, N.R., Blickle, V., Dietrich, S., Langmuir 26 (10), 7233 (2010).CrossRefGoogle Scholar
Dawood, M.K., Zheng, H., Liew, T.H., Leong, K.C., Foo, Y.L., Rajagopalan, R., Khan, S.A., Choi, W.K., Langmuir 27 (7), 4126 (2011).CrossRefGoogle Scholar
Smith, M.K., Singh, V., Kalaitzidou, K., Cola, B.A., ACS Nano 9 (2), 1080 (2015).CrossRefGoogle Scholar
Grinthal, A., Kang, S.H., Epstein, A.K., Aizenberg, M., Khan, M., Aizenberg, J., Nano Today 7 (1), 35 (2012).CrossRefGoogle Scholar
Chakrapani, N., Wei, B., Carrillo, A., Ajayan, P.M., Kane, R.S., Proc. Natl. Acad. Sci. U.S.A. 101 (12), 4009 (2004).CrossRefGoogle Scholar
Liu, H., Li, S.H., Zhai, J., Li, H.J., Zheng, Q.S., Jiang, L., Zhu, D.B., Angew. Chem. Int. Ed. 43 (9), 1146 (2004).CrossRefGoogle Scholar
Cohen, A.E., Mahadevan, L., Proc. Natl. Acad. Sci. U.S.A. 100 (21), 12141 (2003).CrossRefGoogle Scholar
Liu, J.-L., Feng, X.-Q., Acta Mech. Sin. 28 (4), 928 (2012).CrossRefGoogle Scholar
Chae, S.J., Güneş, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H.-J., Yoon, S.-M., Choi, J.-Y., Park, M.H., Yang, C.W., Pribat, D., Lee, Y.H., Adv. Mater. 21 (22), 2328 (2009).CrossRefGoogle Scholar
Duan, H., Yang, J.K., Berggren, K.K., Small 7 (18), 2661 (2011).CrossRefGoogle Scholar
Bico, J., Roman, B., Moulin, L., Boudaoud, A., Nature 432 (7018), 690 (2004).CrossRefGoogle Scholar
Kim, H.Y., Mahadevan, L., J. Fluid Mech. 548, 141 (2006).CrossRefGoogle Scholar
Py, C., Bastien, R., Bico, J., Roman, B., Boudaoud, A., Europhys. Lett. 77, 44005 (2007).CrossRefGoogle Scholar
Chandra, D., Yang, S., Acc. Chem. Res. 43, 1080 (2010).CrossRefGoogle Scholar
Zhao, Y.P., Fan, J.G., Appl. Phys. Lett. 88 (10), 103123 (2006).CrossRefGoogle Scholar
Chandra, D., Yang, S., Langmuir 25 (18), 10430 (2009).CrossRefGoogle Scholar
Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Morsczeck, C., Thie, M., Giersig, M., Nano Lett. 4 (11), 2233 (2004).CrossRefGoogle Scholar
Chiodi, F., Roman, B., Bico, J., Europhys. Lett. 90, 44006 (2010).CrossRefGoogle Scholar
Glassmaker, N.J., Jagota, A., Hui, C.-Y., Kim, J., J. R. Soc. Interface 1 (1), 23 (2004).CrossRefGoogle Scholar
Roca-Cusachs, P., Rico, F., Martínez, E., Toset, J., Farré, R., Navajas, D., Langmuir 21 (12), 5542 (2005).CrossRefGoogle Scholar
Delrio, F., De Boer, M., Knapp, J., Reedy, E., Clews, P., Dunn, M., Nat. Mater. 4 (8), 629 (2005).CrossRefGoogle Scholar
Kang, S.H., Pokroy, B., Mahadevan, L., Aizenberg, J., ACS Nano 4 (11), 6323 (2010).CrossRefGoogle Scholar
Chaudhury, M.K., Weaver, T., Hui, C.Y., Kramer, E.J., J. Appl. Phys. 80 (1), 30 (1996).CrossRefGoogle Scholar
Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., Iijima, S., Nat. Mater. 5 (12), 987 (2006).CrossRefGoogle Scholar
Yamada, T., Namai, T., Hata, K., Futaba, D.N., Mizuno, K., Fan, J., Yudasaka, M., Yumura, M., Iijima, S., Nat. Nanotechnol. 1 (2), 131 (2006).CrossRefGoogle Scholar
De Volder, M., Tawfick, S.H., Park, S.J., Copic, D., Zhao, Z., Lu, W., Hart, A.J., Adv. Mater. 22 (39), 4384 (2010).CrossRefGoogle Scholar
Duan, H., Berggren, K.K., Nano Lett. 10 (9), 3710 (2010).CrossRefGoogle Scholar
Kang, S.H., Wu, N., Grinthal, A., Aizenberg, J., Phys. Rev. Lett. 107 (17), 177802 (2011).CrossRefGoogle Scholar
Chandra, D., Yang, S., Soshinsky, A.A., Gambogi, R.J., ACS Appl. Mater. Interfaces 1 (8), 1698 (2009).CrossRefGoogle Scholar
Vukusic, P., Hallam, B., Noyes, J., Science 315 (5810), 348 (2007).CrossRefGoogle Scholar
Barcelo, S.J., Kim, A., Wu, W., Li, Z., ACS Nano 6 (7), 6446 (2012).CrossRefGoogle Scholar
Hao, E., Schatz, G.C., J. Chem. Phys. 120 (1), 357 (2004).CrossRefGoogle Scholar
Wustholz, K.L., Henry, A.I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., Natan, M.J., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 132 (31), 10903 (2010).CrossRefGoogle Scholar
Fang, Y., Seong, N.H., Dlott, D.D., Science 321 (5887), 388 (2008).CrossRefGoogle Scholar
Kim, A., Barcelo, S.J., Williams, R.S., Li, Z., Anal. Chem. 84 (21), 9303 (2012).CrossRefGoogle Scholar
Hu, M., Ou, F.S., Wu, W., Naumov, I., Li, X., Bratkovsky, A.M., Williams, R.S., Li, Z., J. Am. Chem. Soc. 132 (37), 12820 (2010).CrossRefGoogle Scholar
Ou, F.S., Hu, M., Naumov, I., Kim, A., Wu, W., Bratkovsky, A.M., Li, X., Williams, R.S., Li, Z., Nano Lett. 11 (6), 2538 (2011).CrossRefGoogle Scholar
Kim, A., Ou, F.S., Ohlberg, D.A., Hu, M., Williams, R.S., Li, Z., J. Am. Chem. Soc. 133 (21), 8234 (2011).CrossRefGoogle Scholar