Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-20T17:31:33.887Z Has data issue: false hasContentIssue false

Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-efficiency thermoelectric (TE) materials are important for power-generation devices that are designed to convert waste heat into electrical energy.They can also be used in solid-state refrigeration devices.The conversion of waste heat into electrical energy may play an important role in our current challenge to develop alternative energy technologies to reduce our dependence on fossil fuels and reduce greenhouse gas emissions.

An overview of various TE phenomena and materials is provided in this issue of MRS Bulletin. Several of the current applications and key parameters are defined and discussed.Novel applications of TE materials include biothermal batteries to power heart pacemakers, enhanced performance of optoelectronics coupled with solid-state TE cooling, and power generation for deep-space probes via radioisotope TE generators.A number of different systems of potential TE materials are currently under investigation by various research groups around the world, and many of these materials are reviewed in the articles in this issue.These range from thin-film superlattice materials to large single-crystal or polycrystalline bulk materials, and from semiconductors and semimetals to ceramic oxides.The phonon-glass/electron-crystal approach to new TE materials is presented, along with the role of solid-state crystal chemistry.Research criteria for developing new materials are highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

References

1.The reader is referred to the many MRS Symposium Proceedings volumes on the topic of thermoelectric materials and energy-conversion technologies: Thermoelectric Materials—New Directions and Approaches (Mater. Res. Soc. Symp. Proc. 478, 1997); Thermoelectric Materials 1998—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications (Mater. Res. Soc. Symp. Proc. 545, 1999); Thermoelectric Materials 2000—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications (Mater. Res. Soc. Symp. Proc. 626, 2001); Thermoelectric Materials 2001—Research and Applications (Mater. Res. Soc. Symp. Proc. 691, 2002); Thermoelectric Materials 2003—Research and Applications (Mater. Res. Soc. Symp. Proc. 793, 2004); and Materials and Technologies for Direct Thermal-to-Electric Energy Conversion (Mater. Res. Soc. Symp. Proc. 886, 2006) in press.Google Scholar
2.Tritt, T.M. ed., “Recent Trends in Thermoelectric Materials Research,” Semiconductors and Semimetals, Vols. 69-71, treatise editors, Willardson, R.K. and Weber, E. (Academic Press, New York, 2000).Google Scholar
3. Jet Propulsion Laboratory Thermoelectric Science and Engineering Web site, http://www.its.caltech.edu/jsnyder/ther-moelectrics/ (accessed February 2006).Google Scholar
4.Allen, A.W.Laser Focus World 33 (March 1997) p.S15.Google Scholar
5.Nolas, G.S.Sharp, J. and Goldsmid, H.J.Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).CrossRefGoogle Scholar
6.Seebeck, T.J.Abh. K. Akad. Wiss. (Berlin, 1823) p.265.Google Scholar
7.Morelli, D.T. in Encyclopedia of Applied Physics, Vol.21 (1997) p.339.Google Scholar
8.Chaiken, P.M. in Organic Superconductors, edited by Kresin, V.Z. and Little, W.A. (Plenum Press, New York, 1990) p.101.CrossRefGoogle Scholar
9.Ioffe, A.F.Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957).Google Scholar
10.Peltier, J.C.Ann. Chem. LVI (1834) p.371.Google Scholar
11.Goldsmid, H.J.Electronic Refrigeration (Pion Limited, London, 1986).Google Scholar
12.Rowe, D.M. ed., CRC Handbook of Thermo-electrics (CRC Press, Boca Raton, FL, 1995).Google Scholar
13.Rossiter, P.L.The Electrical Resistivity of Metals & Alloys (Cambridge Press, New York, 1987); F.J., Blatt Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968); L. Solymar and D., Walsh Electrical Properties of Materials, 6th Ed. (Oxford Press, New York, 1998).CrossRefGoogle Scholar
14.Slack, G.A. in CRC Handbook of Thermo-electrics, ed. by Rowe, D.M. (CRC Press, Boca Raton, FL, 1995) p.407.Google Scholar
15.Mahan, G.D. and Sofo, J.O.Proc. Natl. Acad. Sci. USA 93 (1996) p.7436.CrossRefGoogle Scholar
16.Mahan, G.D.Sales, B. and Sharp, J.Phys. Today 50 (3) (1997) p.42.CrossRefGoogle Scholar
17.Slack, G.A. in Solid State Physics, Vol.34, edited by Seitz, F.Turnbull, D. and Ehrenreich, H. (Academic Press, New York, 1979) p.1.Google Scholar
18.Heikes, R.R. and Ure, R.W. Jr, Thermoelectricity: Science and Engineering (Wiley Interscience, New York, 1961) p.405.Google Scholar
19.Wood, C.Rep. Prog. Phys. 51 (1988) p. 459.Google Scholar
20.Kanatzidis, M.G.Mahanti, S.D. and Hogan, T.P. eds., Chemistry, Physics and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride (Plenum, New York, 2003) p.35.CrossRefGoogle Scholar
21.Chung, D.Y.Hogan, T.Brazis, P.Rocci-Lane, M., Kannewurf, C.Bastea, M.Uher, C. and Kanatzidis, M.G.Science 287 (2000) p.1024.CrossRefGoogle Scholar
22.Littleton, R.T. IV, Tritt, T.M.Korzenski, M., Ketchum, D. and Kolis, J.W.Phys. Rev. B. Rap. Com-mun. 64 121104 (2001).CrossRefGoogle Scholar
23.Hsu, K.F.Loo, S.Gao, F.Chen, W.Dyck, J.S.Uher, C.Hogan, T.Polychroniadis, E.K. and Kanatzidis, M.Science 303 (2004) p.8181.CrossRefGoogle Scholar
24.Shen, Q.Chen, L.Goto, T.Hirai, T.Yang, J.Meisner, G.P. and Uher, C.Appl. Phys. Lett. 79 (2001) p.4165.CrossRefGoogle Scholar
25.Caillat, T.Fleurial, J.P. and Borshchevsky, A.J.Phys. Chem. Solids 58 (1997) p.1119.Google Scholar
26.Terasaki, I. and Murayama, N. eds., Oxide Thermoelectrics (Research Signpost, Trivan-drum, India, 2002).Google Scholar
27.Ohtaki, M.Tsubota, T.Eguchi, K. and Arai, H.J.Appl. Phys. 79 (1996) p.1816.CrossRefGoogle Scholar
28.Gambino, R.J.Grobman, W.D. and Toxen, A.M.Appl. Phys. Lett. 22 (1973) p.506.CrossRefGoogle Scholar
29.Mahan, G.D. in Solid State Physics, edited by Seitz, F.Ehrenreich, H. and Spaepen, F. (Academic Press, New York, 1997) p.51.Google Scholar
30.Rowe, D.M.Min, G. and Kuznetsov, V.L.Philos. Mag. Lett. 77 (1998) p. 105; D.M., Rowe, V.L., Kuznetsov, L.A., Kuznetsova, and G., Min J.Phys. D: Appl. Phys. 35 (2002) p.2183.CrossRefGoogle Scholar
31.He, T.Calvarese, T.G.Chen, J.-Z.Rosenfeld, H.D.Small, R.J.Krajewski, J.J. and Subramanian, M.A.Proc. 24th Int. Conf. on Thermo-electrics, edited by Tritt, T.M. (IEEE, Piscataway, NJ, 2005) p.434.Google Scholar
32.Hicks, L.D. and Dresselhaus, M.S.Phys. Rev. B 47 (1993) p.12727.CrossRefGoogle Scholar
33.Venkatasubramanian, R.Siivola, E.Colpitts, T. and O'Quinn, B., Nature 13 (2001) p.597.Google Scholar
34.Harman, T.C.Taylor, P.J.Walsh, M.P. and LaForge, B.E.Science 297 (2002) p.2229.CrossRefGoogle Scholar
35.Tritt, T.M.Science 283 (1999) p.804.CrossRefGoogle Scholar