Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T13:56:01.330Z Has data issue: false hasContentIssue false

A Thermodynamic Approach to Selecting Alternative Gate Dielectrics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

As a first step in the identification of suitable alternative gate dielectrics for metal oxide semiconductor field-effect transistors (MOSFETs), we have used tabulated thermodynamic data to comprehensively assess the thermodynamic stability of binary oxides and nitrides in contact with silicon at temperatures from 300 K to 1600 K. Sufficient data exist to conclude that the vast majority of binary oxides and nitrides are thermodynamically unstable in contact with silicon. The dielectrics that remain are candidate materials for alternative gate dielectrics. Of these remaining candidates, the oxides have a significantly higher dielectric constant (ĸ) than the nitrides. We then extend this thermodynamic approach to multicomponent oxides comprising the candidate binary oxides. The result is a relatively small number of silicon-compatible gate dielectric materials with ĸ values substantially greater than that of SiO2 and optical bandgaps ≥ eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.International Technology Roadmap for Semiconductors: 1999 (Semiconductor Industry Association, San Jose, CA, 1999) p. 105.Google Scholar
2.National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 1997) p. 72.Google Scholar
3.Kingon, A.I., Maria, J.-P., and Streiffer, S.K., Nature 406 (2000) p. 1032.Google Scholar
4.Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys. 89 (2001) p. 5243.CrossRefGoogle Scholar
5.Barin, I., Thermochemical Data of Pure Substances, 3rd ed., Vols. I and II (VCH, Weinheim, 1995).Google Scholar
6.Schlom, D.G., Billman, C.A., Haeni, J.H., Lettieri, J., Tan, P.H., Held, R.R.M., Völk, S., and Hubbard, K.J., “High-ĸ Candidates for Use as the Gate Dielectric in Silicon MOSFETs,” Appl. Phys. A in press.Google Scholar
7.Zaima, S., Furuta, T., Yasuda, Y., and Iida, M., J. Electrochem. Soc. 137 (1990) p. 1297.CrossRefGoogle Scholar
8.Alers, G.B., Werder, D.J., Chabal, Y., Lu, H.C., Gusev, E.P., Garfunkel, E., Gustafsson, T., and Urdahl, R.S., Appl. Phys. Lett. 73 (1998) p. 1517.Google Scholar
9.Mao, A.Y., Son, K.A., White, J.M., Kwong, D.L., Roberts, D.A., and Vrtis, R.N., J. Vac. Sci. Technol., A 17 (1999) p. 954.Google Scholar
10.Gilmer, D.C., Colombo, D.G., Taylor, C.J., Roberts, J., Haugstad, G., Campbell, S.A., Kim, H.-S., Wilk, G.D., Gribelyuk, M.A., and Gladfelter, W.L., Chem. Vap. Dep. 4 (1998) p. 9.Google Scholar
11.Pennebaker, W.B., IBM J. Res. Dev. 13 (11) (1969) p. 686.CrossRefGoogle Scholar
12.Panitz, J.K.G. and Hu, C.C., J. Vac. Sci. Technol. 16 (1979) p. 315.Google Scholar
13.Dharmadhikari, V.S. and Grannemann, W.W., J. Vac. Sci. Technol., A 1 (1983) p. 483.Google Scholar
14.Matsubara, S., Sakuma, T., Yamamichi, S., Yamaguchi, H., and Miyasaka, Y., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, 1990) p. 243;Google Scholar
Sakuma, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl. Phys. Lett. 57 (1990) p. 2431;CrossRefGoogle Scholar
Yamaguchi, H., Matsubara, S., and Miyasaka, Y., Jpn. J. Appl. Phys., Part 1 30 (1991) p. 2197.CrossRefGoogle Scholar
15.Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M., and Koinuma, H., Jpn. J. Appl. Phys., Part 2: Lett. 30 (1991) p. L1136.CrossRefGoogle Scholar
16.Kwo, J., Hong, M., Kortan, A.R., Queeney, K.L., Chabal, Y.J., Opila, R.L. Jr, Muller, D.A., Chu, S.N.G., Sapjeta, B.J., Lay, T.S., Mannaerts, J.P., Boone, T., Krautter, H.W., Krajewski, J.J., Sergent, A.M., and Rosamilia, J.M., J. Appl. Phys. 89 (2001) p. 3920.CrossRefGoogle Scholar
17.Werder, D.J., Alers, G.B., Chabal, Y., Lu, H.C., Gusev, E.P., Garfunkel, E., Gustafsson, T., and Urdahl, R.S. (private communication). The Ta2O5/Si interface shown is from the sample in its as-grown state. With subsequent processing steps (in oxygen), the SiOx layer became thicker (see Figure 1 in Ref. 8).Google Scholar
18.Maria, J.-P., Schulte, W.H., Wicaksana, D., Busch, B., Kingon, A.I., and Garfunkel, E., “Decomposition of Ultra-Thin ZrO2 Films on Si,” Appl. Phys. Lett. (2001) submitted for publication.Google Scholar
19.Jeon, T.S., White, J.M., and Kwong, D.L., Appl. Phys. Lett. 78 (2001) p. 368.CrossRefGoogle Scholar
20.Beyers, R., J. Appl. Phys. 56 (1984) p. 147;CrossRefGoogle Scholar
Beyers, R., Sinclair, R., and Thomas, M.E., J. Vac. Sci. Technol., B 2 (1984) p. 781;CrossRefGoogle Scholar
Beyers, R., Kim, K.B., and Sinclair, R., J. Appl. Phys. 61 (1987) p. 2195;Google Scholar
Beyers, R., “Formation and Transformation of Titanium Disilicide Thin Films on Silicon Substrates,” PhD dissertation, Stanford University, 1989, p. 38.Google Scholar
21.Hubbard, K.J. and Schlom, D.G., J. Mater. Res. 11 (1996) p. 2757.Google Scholar
22.Tan, P.H. and Schlom, D.G., “Thermody-namic Stability of Binary Nitrides in Contact with Silicon,” J. Mater. Res. (2002) submitted for publication.Google Scholar
23.Zhong, H., Heuss, G., Suh, Y.-S., Misra, V., and Hang, S.-N., J. Electron. Mater. 30 (2001) p. 1493.CrossRefGoogle Scholar
24.Liu, J.P., Zaumseil, P., Bugiel, E., and Osten, H.J., Appl. Phys. Lett. 79 (2001) p. 671.CrossRefGoogle Scholar
25.Lide, D.R., ed., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 77th ed. (CRC Press, Boca Raton, FL, 1996).Google Scholar
26.Behner, H., Wecker, J., Matthée, Th., and Samwer, K., Surf. Interface Anal. 18 (1992) p. 685;Google Scholar
Matthée, Th., Wecker, J., Behner, H., Friedl, G., Eibl, O., and Samwer, K., Appl. Phys. Lett. 61 (1992) p. 1240.Google Scholar
27.Fenner, D.B., Viano, A.M., Fork, D.K., Connell, G.A.N., Boyce, J.B., Ponce, F.A., and Tramontana, J.C., J. Appl. Phys. 69 (1991) p. 2176.Google Scholar
28.Rou, S.H., Graettinger, T.M., Chow, A.F., Soble, C.N. II, Lichtenwalner, D.J., Auciello, O., and Kingon, A.I., in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, 1992) p. 81.Google Scholar
29.Shannon, R.D., J. Appl. Phys. 73 (1993) p. 348.Google Scholar
30.McKee, R.A., Walker, F.J., and Chisholm, M.F., Phys. Rev. Lett. 81 (1998) p. 3014.CrossRefGoogle Scholar
31.Il'chenko, V.V., Kuznetsov, G.V., Strikha, V.I., and Tsyganova, A.I., Mikroelektron. 27 (1998) p. 340 [Russ. Microelectron. 27 (1998) p. 291];Google Scholar
Il'chenko, V.V. and Kuznetsov, G.V., Pis'ma Zh. Tekh. Fiz. 27 (2001) p. 58 [Sov. Tech. Phys. Lett. 27 (2001) p. 333].Google Scholar
32.Nye, J.F., Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1957, 1985).Google Scholar
33.NIST Crystal Data 1997, CD-ROM database (International Center for Diffraction Data, Newton Square, PA, 1997).Google Scholar
34.Lim, S.-G., Kriventsov, S., Jackson, T.N., Haeni, J.H., Schlom, D.G., Balbashov, A.M., Uecker, R., Reich, P., Freeouf, J.L., and Lucovsky, G., J. Appl. Phys. (2002) in press.Google Scholar
35.Haeni, J.H., Trolier-McKinstry, S., Lim, S-G., Jackson, T.N., Rosario, M.M., Freeouf, J.L., Uecker, R., Reiche, P., and Schlom, D.G., “Dielectric Tensor and Optical Bandgap Measurement of Single Crystals of the Alternative Gate Oxide Candidates ReScO3,” J. Appl. Phys. (2002) submitted for publication.Google Scholar
36. Adapted from plot made by D.C. Gilmer (private communication).Google Scholar
37.DiStefano, T.H. and Eastman, D.E., Solid State Commun. 9 (1971) p. 2259.Google Scholar
38.Brown, G.A., Robinette, W.C. Jr, and Carlson, H.G., J. Electrochem. Soc. 115 (1968) p. 948.CrossRefGoogle Scholar
39.Goodman, A.M., Appl. Phys. Lett. 13 (1968) p. 275.CrossRefGoogle Scholar
40.French, R.H., J. Am. Ceram. Soc. 73 (1990) p. 477.CrossRefGoogle Scholar
41.Roessler, D.M. and Walker, W.C., Phys. Rev. 159 (1967) p. 733.CrossRefGoogle Scholar
42.Bortz, M.L., French, R.H., Jones, D.J., Kasowski, R.V., and Ohuchi, F.S., Phys. Scr. 41 (1990) p. 537.CrossRefGoogle Scholar
43.Abramov, V.N. and Kuznetsov, A.I., Fiz. Tverd. Tela (Leningrad) 20 (1978) p. 689 [Sov. Phys. Solid State 20 (1978) p. 399].Google Scholar
44.Madelung, O., Schulz, M., and Weiss, H., eds., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 17b (Springer, Berlin, 1982) pp. 22, 27.Google Scholar
45.Zollner, S. (private communication).Google Scholar
46.Tippins, H.H., J. Phys. Chem. Solids 27 (1966) p. 1069.Google Scholar
47.Derbeneva, S.S. and Batsanov, S.S., Dokl. Chem. Akad. Nauk SSSR 175 (1967) p. 1062 [Sov. Chem. Dokl. 175 (1967) p. 710].Google Scholar
48.Andreeva, A.F. and Gil'man, I.Y., Zh. Prikl. Spektrosk. 28 (1978) p. 895 [J. Appl. Spectrosc. (USSR) 28 (1978) p. 610].Google Scholar
49.Samsonov, G.V., ed., The Oxide Handbook, 2nd ed. (IFI/Plenum Publishers, New York, 1982) p. 213.CrossRefGoogle Scholar
50.French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.-N., and Ching, W.Y., Phys. Rev. B 49 (1994) p. 5133.CrossRefGoogle Scholar
51.Samara, G.A., J. Appl. Phys. 68 (1990) p. 4214.Google Scholar
52.Ovanesyan, K.L., Petrosyan, A.G., Shirinyan, G.O., Pedrini, C., and Zhang, L., Opt. Mater. 10 (1998) p. 291.CrossRefGoogle Scholar
53. Data from Sata, N., Ishigame, M., and Shin, S., Solid State Ionics 86–88 (1996) p. 629, extrapolated to α = 103 cm−1 after R.W. Collins and K. Vedam, in Encyclopedia of Applied Physics, Vol. 12, edited by G.L. Trigg (VCH Publishers, New York, 1995) p. 285.Google Scholar
54.Sata, N., Ishigame, M., and Shin, S., Solid State Ionics 86–88 (1996) p. 629.CrossRefGoogle Scholar