Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T19:42:39.785Z Has data issue: false hasContentIssue false

Therapeutic potential of nanoceria in regenerative medicine

Published online by Cambridge University Press:  13 November 2014

Soumen Das
Affiliation:
Advanced Materials Processing Analysis Center, Nanoscience Technology Center, University of Central Florida, USA; [email protected]
Srinivasulu Chigurupati
Affiliation:
Division of Neurotoxicology, US Food and Drug Administration, National Center for Toxicological Research, USA; [email protected]
Janet Dowding
Affiliation:
Burnett School of Biomedical Science, University of Central Florida, USA; [email protected]
Prabhakaran Munusamy
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, USA; [email protected]
Donald R. Baer
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, USA; [email protected]
James F. McGinnis
Affiliation:
Department of Ophthalmology, University of Oklahoma Health Sciences Center, USA; [email protected]
Mark P. Mattson
Affiliation:
Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, USA; [email protected]
William Self
Affiliation:
Burnett School of Biomedical Science, University of Central Florida, USA; [email protected]
Sudipta Seal
Affiliation:
Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Mater. Sci. Eng., College of Medicine, University of Central Florida, USA; [email protected]
Get access

Abstract

Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging, or trauma. Advancement of tissue engineering requires innovation in the field of three-dimensional scaffolding and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates that can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for an extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Korsvik, C., Patil, S., Seal, S., Self, W.T., Chem. Commun. 10, 1056 (2007).CrossRefGoogle Scholar
Pirmohamed, T., Dowding, J.M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A.S., King, J.E.S., Seal, S., Self, W.T., Chem. Commun. 46, 2736 (2010).CrossRefGoogle Scholar
Xue, Y., Zhai, Y., Zhou, K., Wang, L., Tan, H., Luan, Q., Yao, X., Chem. Eur. J. 18, 11115 (2012).CrossRefGoogle Scholar
Dowding, J.M., Seal, S., Self, W.T., Drug Deliv. Transl. Res. 3, 375 (2013).Google Scholar
Dowding, J.M., Dosani, T., Kumar, A., Seal, S., Self, W.T., Chem. Commun. 48, 4896 (2012).CrossRefGoogle Scholar
Cafun, J.-D., Kvashnina, K.O., Casals, E., Puntes, V.F., Glatzel, P., ACS Nano 7, 10726 (2013).CrossRefGoogle Scholar
Das, S., Dowding, J.M., Klump, K.E., McGinnis, J.F., Self, W., Seal, S., Nanomedicine 8, 1483 (2013).CrossRefGoogle ScholarPubMed
Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M., Nat. Mater. 8, 543 (2009).CrossRefGoogle Scholar
Karakoti, A.S., Kuchibhatla, S., Baer, D.R., Thevuthasan, S., Sayle, D.C., Seal, S., Small 4, 1210 (2008).CrossRefGoogle Scholar
Zhang, F., Chan, S.W., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D., Herman, I.P., Appl. Phys. Lett. 80, 127 (2002).CrossRefGoogle Scholar
Sharma, G., Kodali, V., Gaffrey, M., Wang, W., Minard, K.R., Karin, N.J., Teeguarden, J.G., Thrall, B.D., Nanotoxicology 8, 663 (2013).CrossRefGoogle Scholar
Kuchibhata, S., Karakoti, A.S., Baer, D.R., Samudrala, S., Engelhard, M.H., Amonette, J.E., Thevuthasan, S., Seal, S., J. Phys. Chem. C 116, 14108 (2012).CrossRefGoogle Scholar
Kumar, A., Das, S., Munusamy, P., Self, W., Baer, D.R., Sayle, D.C., Seal, S., Environ. Sci. Nano (2014), doi: 10.1039/C4EN00052H.Google Scholar
Karakoti, A.S., Singh, S., Kumar, A., Malinska, M., Kuchibhatla, S., Wozniak, K., Self, W.T., Seal, S., J. Am. Chem. Soc. 131, 14144 (2009).CrossRefGoogle Scholar
Arya, A., Sethy, N.K., Singh, S.K., Das, M., Bhargava, K., Int. J. Nanomed. 8, 4507 (2013).Google Scholar
Kumari, M., Singh, S.P., Chinde, S., Rahman, M.F., Mahboob, M., Grover, P., Int. J. Toxicol. 33, 86 (2014).Google Scholar
Karakoti, A., Singh, S., Dowding, J.M., Seal, S., Self, W.T., Chem. Soc. Rev. 39, 4422 (2010).CrossRefGoogle Scholar
Hosseini, A., Baeeri, M., Rahimifard, M., Navaei-Nigjeh, M., Mohammadirad, A., Pourkhalili, N., Hassani, S., Kamali, M., Abdollahi, M., Hum. Exp. Toxicol. 32, 544 (2013).CrossRefGoogle Scholar
Chen, S., Hou, Y., Cheng, G., Zhang, C., Wang, S., Zhang, J., Biol. Trace Elem. Res. 154, 156 (2013).CrossRefGoogle Scholar
Ciofani, G., Genchi, G.G., Liakos, I., Cappello, V., Gemmi, M., Athanassiou, A., Mazzolai, B., Mattoli, V., Pharm. Res. 30, 2133 (2013).CrossRefGoogle Scholar
Arya, A., Sethy, N.K., Das, M., Singh, S.K., Das, A., Ujjain, S.K., Sharma, R.K., Sharma, M., Bhargava, K., Free Radic. Res. 48 (7), 784 (2014).CrossRefGoogle Scholar
Otrock, Z.K., Mahfouz, R.A., Makarem, J.A., Shamseddine, A.I., Blood Cells Mol. Dis. 39, 212 (2007).CrossRefGoogle Scholar
Das, S., Singh, S., Dowding, J.M., Oommen, S., Kumar, A., Sayle, T.X., Saraf, S., Patra, C.R., Vlahakis, N.E., Sayle, D.C., Self, W.T., Seal, S., Biomaterials 33, 7746 (2012).CrossRefGoogle Scholar
Chigurupati, S., Mughal, M.R., Okun, E., Das, S., Kumar, A., McCaffery, M., Seal, S., Mattson, M.P., Biomaterials 34, 2194 (2013).CrossRefGoogle Scholar
Giri, S., Karakoti, A., Graham, R.P., Maguire, J.L., Reilly, C.M., Seal, S., Rattan, R., Shridhar, V., PLoS One 8, e54578 (2013).Google Scholar
Alili, L., Sack, M., von Montfort, C., Giri, S., Das, S., Carroll, K.S., Zanger, K., Seal, S., Brenneisen, P., Antioxid. Redox Signaling 19 (8), 765 (2012).CrossRefGoogle Scholar
Wason, M.S., Colon, J., Das, S., Seal, S., Turkson, J., Zhao, J., Baker, C.H., Nanomedicine. 9 (4), 558 (2013).CrossRefGoogle Scholar
Karakoti, A.S., Tsigkou, O., Yue, S., Lee, P.D., Stevens, M.M., Jones, J.R., Seal, S., J. Mater. Chem. 20, 8912 (2010).CrossRefGoogle Scholar
Mandoli, C., Pagliari, F., Pagliari, S., Forte, G., Di Nardo, P., Licoccia, S., Traversa, E., Adv. Funct. Mater. 20, 1617 (2010).CrossRefGoogle Scholar
Pagliari, F., Mandoli, C., Forte, G., Magnani, E., Pagliari, S., Nardone, G., Licoccia, S., Minieri, M., Di Nardo, P., Traversa, E., ACS Nano 6, 3767 (2012).CrossRefGoogle Scholar
Naganuma, T., Traversa, E., Biomaterials 35, 4441 (2014).CrossRefGoogle Scholar
Ellison, A., Fry, R., Merchant, S., Kuiry, S., Patil, S., Seal, S., Rzigalinski, B., J. Neurotrauma 20 (10), 1105 (2003).Google Scholar
Das, M., Patil, S., Bhargava, N., Kang, J.F., Riedel, L.M., Seal, S., Hickman, J.J., Biomaterials 28, 1918 (2007).CrossRefGoogle Scholar
Dangelo, B., Santucci, S., Benedetti, S., Loreto, D., Phani, S.F.R.A., Amicarelli, F., Paola Cerù, M., Cimini, A., Curr. Nanosci. 5, 167 (2009).CrossRefGoogle Scholar
Cimini, A., D’Angelo, B., Das, S., Gentile, R., Benedetti, E., Singh, V., Monaco, A.M., Santucci, S., Seal, S., Acta Biomater. 8, 2056 (2012).CrossRefGoogle Scholar
Estevez, A.Y., Pritchard, S., Harper, K., Aston, J.W., Lynch, A., Lucky, J.J., Ludington, J.S., Chatani, P., Mosenthal, W.P., Leiter, J.C., Andreescu, S., Erlichman, J.S., Free Radic. Biol. Med. 51, 1155 (2011).CrossRefGoogle Scholar
Estevez, A.Y., Erlichman, J.S., Cerium Oxide Nanoparticles for the Treatment of Neurological Oxidative Stress Diseases (American Chemical Society, Washington, DC, 2011), p. 255.Google Scholar
Decoteau, W., Estevez, A., Leo-Nyquist, S., Heckman, K., Reed, K., “Ceria Nanoparticles Reduce Disease Severity in a Mouse Model of Multiple Sclerosis,” in TechConnect World Conference and Expo 2011 (TechConnect, Boston, MA, 2011).Google Scholar
Chen, J., Patil, S., Seal, S., McGinnis, J.F., Nat. Nanotechnol. 1, 142 (2006).CrossRefGoogle Scholar
Wong, L.L., Hirst, S.M., Pye, Q.N., Reilly, C.M., Seal, S., McGinnis, J.F., PLoS One 8, e58431 (2013).CrossRefGoogle Scholar
Kyosseva, S.V., Chen, L., Seal, S., McGinnis, J.F., Exp. Eye Res. 116, 63 (2013).CrossRefGoogle Scholar
Zhou, X., Wong, L.L., Karakoti, A.S., Seal, S., McGinnis, J.F., PLoS One 6, e16733 (2011).CrossRefGoogle Scholar
Cai, X., Seal, S., McGinnis, J.F., Biomaterials 35, 249 (2014).CrossRefGoogle Scholar
Kong, L., Cai, X., Zhou, X., Wong, L.L., Karakoti, A.S., Seal, S., McGinnis, J.F., Neurobiol. Dis. 42, 514 (2011).CrossRefGoogle Scholar
Hirst, S.M., Karakoti, A.S., Tyler, R.D., Sriranganathan, N., Seal, S., Reilly, C.M., Small 5, 2848 (2009).CrossRefGoogle Scholar
Hirst, S.M., Karakoti, A., Singh, S., Self, W., Tyler, R., Seal, S., Reilly, C.M., Environ. Toxicol. 28, 107 (2013).CrossRefGoogle Scholar
Celardo, I., De Nicola, M., Mandoli, C., Pedersen, J.Z., Traversa, E., Ghibelli, L., ACS Nano 5, 4537 (2011).CrossRefGoogle Scholar
Chaudhury, K., Babu, N.K., Das, S., Kumar, A., Seal, S., Nanomedicine. 9, 439 (2013).Google Scholar
Tarnuzzer, R.W., Colon, J., Patil, S., Seal, S., Nano Lett. 5, 2573 (2005).CrossRefGoogle Scholar
Colon, J., Herrera, L., Smith, J., Patil, S., Komanski, C., Kupelian, P., Seal, S., Jenkins, D.W., Baker, C.H., Nanomedicine. 5, 225 (2009).CrossRefGoogle Scholar
Madero-Visbal, R.A., Alvarado, B.E., Colon, J., Baker, C.H., Wason, M.S., Isley, B., Seal, S., Lee, C.M., Das, S., Mañon, R., Nanomedicine. 8, 1223 (2012).CrossRefGoogle Scholar
Baer, D.R., Engelhard, M.H., Johnson, G.E., Laskin, J., Lai, J., Mueller, K., Munusamy, P., Thevuthasan, S., Wang, H., Washton, N., Elder, A., Baisch, B.L., Karakoti, A., Kuchibhatla, S.V., Moon, D., J. Vac. Sci. Technol. A 31, 50820 (2013).CrossRefGoogle Scholar