Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T16:03:06.556Z Has data issue: false hasContentIssue false

Theranostic nanomaterials for image-guided gene therapy

Published online by Cambridge University Press:  10 January 2014

Seung Rim Hwang
Affiliation:
College of Pharmacy, Chosun University, South Korea;[email protected]
Sook Hee Ku
Affiliation:
Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, South Korea;[email protected]
Min Kyung Joo
Affiliation:
Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, South Korea;[email protected]
Sun Hwa Kim
Affiliation:
Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, South Korea;[email protected]
Ick Chan Kwon
Affiliation:
Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, South Korea;[email protected]
Get access

Abstract

Theranostics was proposed as a combined process of therapeutics and diagnostics methodology for increasing treatment efficacy and safety with simultaneous monitoring of the response to treatment. In the past two decades, nanotechnology has been the focus of developing strategies for drug delivery and imaging functions, and it has expanded to the design of multifunctional nanoparticles and the creation of “nanotheranostics” (i.e., theranostic nanomedicines). Nanotheranostics also shows potential in gene therapy; however, nanoparticle-mediated delivery of genes still faces major obstacles related to (1) the uptake by the reticuloendothelial system, (2) the ability to get across the target cell membranes through endocytosis, and (3) the ability to accumulate in organs with permeable vasculature. Here, we review the development and application of nanotheranostics, highlighting their relevance to gene therapy as well as molecular imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Svenson, S., Mol. Pharmacol. 10, 848 (2013).Google Scholar
Fernandez-Fernandez, A., Manchanda, R., McGoron, A.J., Appl. Biochem. Biotechnol. 165, 1628 (2011).Google Scholar
Toscano, M.G., Romero, Z., Munoz, P., Cobo, M., Benabdellah, K., Martin, F., Gene Ther. 18, 117 (2011).Google Scholar
van Beijnum, J.R., Eijgelaar, W.J., Griffioen, A.W., Trends Mol. Med. 12, 44 (2006).Google Scholar
Fattal, E., Bochot, A., Intl. J. Pharm. 364, 237 (2008).Google Scholar
Que-Gewirth, N.S., Sullenger, B.A., Gene Ther. 14, 283 (2007).Google Scholar
Jyotil, A., Singh, S.P., Yashpal, M., Dwivedi, P.D., Shanker, R., J. Biomed. Nanotechnol. 7, 170 (2011).Google Scholar
Tseng, Y.C., Mozumdar, S., Huang, L., Adv. Drug Deliv. Rev. 61, 721 (2009).Google Scholar
Prabhu, P., Patravale, V., J. Biomed. Nanotechnol. 8, 859 (2012).CrossRefGoogle Scholar
Rana, S., Bajaj, A., Mout, R., Rotello, V.M., Adv. Drug Deliv. Rev. 64, 200 (2012).Google Scholar
Juliano, R., Bauman, J., Kang, H., Ming, X., Mol. Pharmacol. 6, 686 (2009).Google Scholar
Nie, S., Nanomedicine 5, 523 (2010).Google Scholar
Aryal, S., Pilla, S., Gong, S., J. Nanosci. Nanotechnol. 9, 5701 (2009).Google Scholar
Ghosh, P., Han, G., De, M., Kim, C.K., Rotello, V.M., Adv. Drug Deliv. Rev. 60, 1307 (2008).CrossRefGoogle Scholar
Han, G., Martin, C.T., Rotello, V.M., Chem. Biol. Drug Des. 67, 78 (2006).Google Scholar
Han, G., Chari, N.S., Verma, A., Hong, R., Martin, C.T., Rotello, V.M., Bioconjug. Chem. 16, 1356 (2005).Google Scholar
Sandhu, K.K., McIntosh, C.M., Simard, J.M., Smith, S.W., Rotello, V.M., Bioconjugate Chem. 13, 3 (2002).CrossRefGoogle Scholar
Thomas, M., Klibanov, A.M., Proc. Natl. Acad. Sci. U.S.A. 100, 9138 (2003).Google Scholar
Wang, H., Chen, Y., Li, X.Y., Liu, Y., Mol. Pharmacol. 4, 189 (2007).Google Scholar
Lu, W., Zhang, G., Zhang, R., Flores, L.G. 2nd, Huang, Q., Gelovani, J.G., Li, C., Cancer Res. 70, 3177 (2010).Google Scholar
Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R., Richards-Kortum, R., Cancer Res. 63, 1999 (2003).Google Scholar
Takahashi, H., Niidome, Y., Yamada, S., Chem. Commun. 2247 (2005).Google Scholar
Kawano, T., Yamagata, M., Takahashi, H., Niidome, Y., Yamada, S., Katayama, Y., Niidome, T., J. Control. Release 111, 382 (2006).Google Scholar
Gupta, A.K., Gupta, M., Biomaterials 26, 3995 (2005).Google Scholar
Medarova, Z., Pham, W., Farrar, C., Petkova, V., Moore, A., Nat. Med. 13, 372 (2007).CrossRefGoogle Scholar
Lee, J.H., Lee, K., Moon, S.H., Lee, Y., Park, T.G., Cheon, J., Angew. Chem. Int. Ed. 48, 4174 (2009).CrossRefGoogle Scholar
Namiki, Y., Namiki, T., Yoshida, H., Ishii, Y., Tsubota, A., Koido, S., Nariai, K., Mitsunaga, M., Yanagisawa, S., Kashiwagi, H., Mabashi, Y., Yumoto, Y., Hoshina, S., Fujise, K., Tada, N., Nat. Nanotechnol. 4, 598 (2009).CrossRefGoogle Scholar
Lee, L.J., Ann. Biomed. Eng. 34, 75 (2006).Google Scholar
Bryson, J.M., Fichter, K.M., Chu, W.J., Lee, J.H., Li, J., Madsen, L.A., McLendon, P.M., Reineke, T.M., Proc. Natl. Acad. Sci. U.S.A. 106, 16913 (2009).Google Scholar
Liu, L., Li, X., Hou, S., Xue, Y., Yao, Y., Ma, Y., Feng, X., He, S., Lu, Y., Wang, Y., Zeng, X., Chem. Commun. 44, 6759 (2009).Google Scholar
Wolff, J.A., Rozema, D.B., Mol. Ther. 16, 8 (2008).Google Scholar
Zhang, Y., Satterlee, A., Huang, L., Mol. Ther. 20, 1298 (2012).Google Scholar
Li, S.D., Huang, L., J. Control. Release 145, 178 (2010).Google Scholar
Veronese, F.M., Pasut, G., Drug Discov. Today 10, 1451 (2005).CrossRefGoogle Scholar
Harada-Shiba, M., Yamauchi, K., Harada, A., Takamisawa, I., Shimokado, K., Kataoka, K., Gene Ther. 9, 407 (2002).Google Scholar
Li, C., Penet, M.-F., Wildes, F., Takagi, T., Chen, Z., Winnard, P.T., Artemov, D., Bhujwalla, Z.M., ACS Nano 4, 6707 (2010).Google Scholar
Lee, S.J., Huh, M.S., Lee, S.Y., Min, S., Lee, S., Koo, H., Chu, J.-U., Lee, K.E., Jeon, H., Choi, Y., Choi, K., Byun, Y., Jeong, S.Y., Park, K., Kim, K., Kwon, I.C., Angew. Chem. Int. Ed. 51, 7203 (2012).Google Scholar
Bartlett, D.W., Su, H., Hildebrandt, I.J., Weber, W.A., Davis, M.E., Proc. Natl. Acad. Sci. U.S.A. 104, 15549 (2007).Google Scholar
Mudd, S.R., Trubetskoy, V.S., Blokhin, A.V., Weichert, J.P., Wolff, J.A., Bioconjug. Chem. 21, 1183 (2010).Google Scholar
Zhu, S.G., Xiang, J.J., Li, X.L., Shen, S.R., Lu, H.B., Zhou, J., Xiong, W., Zhang, B.C., Nie, X.M., Zhou, M., Tang, K., Li, G.Y., Biotechnol. Appl. Biochem. 39, 179 (2004).Google Scholar
Chen, Y., Xue, Z., Zheng, D., Xia, K., Zhao, Y., Liu, T., Long, Z., Xia, J., Curr. Gene Ther. 3, 273 (2003).Google Scholar
Jain, T.K., Roy, I., De, T.K., Maitra, A., J. Am. Chem. Soc. 120, 11092 (1998).Google Scholar
Roy, I., Ohulchanskyy, T.Y., Bharali, D.J., Pudavar, H.E., Mistretta, R.A., Kaur, N., Prasad, P.N., Proc. Natl. Acad. Sci. U.S.A. 102, 279 (2005).Google Scholar
Martin, C.R., Kohli, P., Nat. Rev. Drug Discov. 2, 29 (2003).Google Scholar
Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J.I., Nel, A.E., ACS Nano 4, 4539 (2010).Google Scholar
Meng, H., Mai, W.X., Zhang, H., Xue, M., Xia, T., Lin, S., Wang, X., Zhao, Y., Ji, Z., Zink, J.I., Nel, A.E., ACS Nano 7, 994 (2013).Google Scholar
Feng, L., Zhang, S., Liu, Z., Nanoscale 3, 1252 (2011).Google Scholar
Wen, Y., Xing, F., He, S., Song, S., Wang, L., Long, Y., Li, D., Fan, C., Chem. Commun. 46, 2596 (2010).Google Scholar
Tang, L.A., Wang, J., Loh, K.P., J. Am. Chem. Soc. 132, 10976 (2010).Google Scholar
Park, S., Ruoff, R.S., Nat. Nanotechnol. 4, 217 (2009).Google Scholar
Bao, H., Pan, Y., Ping, Y., Sahoo, N.G., Wu, T., Li, L., Li, J., Gan, L.H., Small 7, 1569 (2011).Google Scholar
Yang, K., Hu, L., Ma, X., Ye, S., Cheng, L., Shi, X., Li, C., Li, Y., Liu, Z., Adv. Mater. 24, 1868 (2012).Google Scholar
Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H., Nano Res. 1, 203 (2008).Google Scholar
Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S.T., Liu, Z., Nano Lett. 10, 3318 (2010).Google Scholar
Peng, C., Hu, W., Zhou, Y., Fan, C., Huang, Q., Small 6, 1686 (2010).Google Scholar
Chang, Y., Yang, S.-T., Liu, J.-H., Dong, E., Wang, Y., Cao, A., Liu, Y., Wang, H., Toxicol. Lett. 200, 201 (2011).CrossRefGoogle Scholar
Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S., Cui, D., Nanoscale Res. Lett. 6, 8 (2011).Google Scholar
Zhang, S., Yang, K., Feng, L., Liu, Z., Carbon 49, 4040 (2011).Google Scholar
Wojtoniszak, M., Chen, X., Kalenczuk, R.J., Wajda, A., Łapczuk, J., Kurzewski, M., Drozdzik, M., Chu, P.K., Borowiak-Palen, E., Colloids Surf., B 89, 79 (2012).Google Scholar
Yang, K., Wan, J., Zhang, S., Zhang, Y., Lee, S.-T., Liu, Z., ACS Nano 5, 516 (2010).Google Scholar
Keller, S., Sanderson, M.P., Stoeck, A., Altevogt, P., Immunol. Lett. 107, 102 (2006).Google Scholar
van der Pol, E., Boing, A.N., Harrison, P., Sturk, A., Nieuwland, R., Pharmacol. Rev. 64, 676 (2012).Google Scholar
Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., Lotvall, J.O., Nat. Cell Biol. 9, 654 (2007).Google Scholar
Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., Ochiya, T., J. Biol. Chem. 285, 17442 (2010).CrossRefGoogle Scholar
Alhasan, A.H., Patel, P.C., Choi, C.H.J., Mirkin, C.A., Small (2013), doi 10.1002/smll.201302143.Google Scholar