Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:08:01.199Z Has data issue: false hasContentIssue false

Techniques for Materials Microanalysis

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The science and technology of ultrasmall three-dimensional materials systems has been developing rapidly the last 20 years or so. Catalysts, coatings, composites, as well as electronic device structures—all rely on materials properties on an atomic scale. To develop such new materials and understand the chemical and physical properties that determine their unique behavior, we also require analytical tools with atomic level spatial resolution and at the same time the desired measurement capability. This need, along with extensive scientific interest in the fundamental chemical and physical properties of free surfaces, has led to the continued development of microanalytical chemical analysis techniques over the past 20 years. Most readers will be familiar with many of these techniques with acronyms such as AES, XPS, RBS, SIMS, ESCA, etc. This issue of the MRS BULLETIN will review some recent advances in the development of these techniques as well as introduce new techniques with significant advantages over the older ones.

As you can see from the thickness of this issue, it is difficult to cover the entire field in a finite amount of space. This led us to limit the discussion to those microanalytical tools which can easily be applied to the analysis of buried interface structures such as those found in semiconductor devices.

Type
Materials Microanalysis
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)