Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T14:02:07.606Z Has data issue: false hasContentIssue false

Synthesis of Low-Density Microcellular Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

This section describes and gives examples of processes developed at the DOE laboratories to make LDMMs. In general, these processes fall under one of two schemes: (1) phase separation of polymer or polymer-like solutions, or (2) replication of sacrificial pore formers. Both schemes produce a liquid-filled precursor. The LDMM can be obtained only if this precursor can be “dried” without collapsing the underlying structure. This key synthetic step is rarely a trivial task, and because of its importance, this section starts with a description of LDMM drying technologies.

Most liquid-filled LDMM precursors will collapse into a high-density mass if subjected to evaporative drying. This occurs because large capillary forces are generated when the liquid meniscus moves through the small cells and pores of the precursor. Only very strong and relatively large-celled precursor structures (e.g., inverse emulsions) can withstand these forces.

Some LDMM precursors of moderate strength can be dried by evaporation if the precursor is exchanged into a liquid of low surface tension. Liquified carbon dioxide is an example — at room temperature, liquid CO2 has a surface tension of 1–2 dynes/cm, compared to ˜70 dynes/cm for water, and 20–40 dynes/cm for most organic solvents. CO2 evaporative drying should not be confused with C02 supercritical drying discussed later.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mellor, J.D., Fundamentals of Freeze Drying (Academic Press, New York, 1978).Google Scholar
2.King, C.J., Freeze Drying of Foods (CRC Press, Cleveland, OH, 1971).Google Scholar
3.Young, A.T., J. Cellular Plastics 23 (1987) p. 55.CrossRefGoogle Scholar
4.Young, A.T., Moreno, D.K., and Marsters, R.G., J. Vac. Sci. Technol. 20 (1982) p. 1094.CrossRefGoogle Scholar
5.Aubert, J.H. and Clough, R.L., Polymer 26 (1985) p. 2046.CrossRefGoogle Scholar
6.Coudeville, A.. Eyharts, P., Perrine, J.P., Rey, L. and Rouillard, R., J. Vac. Sci. Technol. 18(3) (1981) p. 1227.CrossRefGoogle Scholar
7.Rand, P.B. and Montoya, O.J., Sandia National Laboratories Report No. SAND-86-0638, 1986.Google Scholar
8.Hair, L.M., Letts, S.A., and Tillotson, T.M., Polym. Mater. Sci. Eng. 59 (1988) p. 749.Google Scholar
9.Hair, L.M. and Letts, S.A., Lawrence Livermore National Laboratory Report No. UCRL-98583, 1989.Google Scholar
10.Aubert, J.H., Polym. Preprints 28 (1987) p. 147.Google Scholar
11.Pekala, R.W., Kong, F.M., J. Phys. Coll. Suppl. 50(4) (1989) p. C4.Google Scholar
12.LeMay, J.D., Polym. Mater. Sci. and Eng. 60 (1989) p. 695.Google Scholar
13.Tillotson, T.M., Hrubesh, L.W., and Thomas, I.M. in Better Ceramics Through Chemistry III edited by Brinker, C.J., Clark, D.E. and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988) p. 685.Google Scholar
14.Tillotson, T.M. and Hrubesh, L.W., in Better Ceramics Through Chemistry IV, edited by Brinker, C.J., Clark, D.E., Ulrich, D.R. and Zelinski, B.J. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990) p. 309; L.W. Hrubesh, T.M. Tillotson, and J.F Poco, Better Ceramics Through Chemistry IV, p. 315.Google Scholar
15.Pekala, R.W., J. Mater. Sci. 24 (1989) p. 3221.CrossRefGoogle Scholar
16.Pekala, R.W. and Alviso, C.T. in Better Ceramics Through Chemistry IV, edited by Brinker, C.J., Clark, D.E., Ulrich, D.R. and Zelinski, B.J. (Mater. Res. Soc. Symp. Proc. 180 Pittsburgh, PA, 1990), p. 791.Google Scholar
17.Pekala, R.W. and Kong, F.M., Polym. Preprints 30(1) (1989) p. 3221.Google Scholar
18.Pekala, R.W. and Hopper, R.W., J. Mater. Sci. 22 (1987) p. 1840.CrossRefGoogle Scholar
19.Barby, D. and Haq, Z., European Patent No. 0-060-138 (September 3, 1982).Google Scholar
20.Litt, M.H., Hsieh, B.R., Kreiger, I.M., Chen, T.T., and Lu, H.L., J. Colloid Interface Science 115 (1987) p. 312.CrossRefGoogle Scholar
21.Williams, J. M. and Wrobleski, D. A., Langmuir 4 (1988) p. 44.; Langmuir, p. 656.CrossRefGoogle Scholar
22.Kong, F.M., Cook, R., Haendler, B., Hair, L., and Letts, S., J. Vac. Sci. Technol. A6(3) (1988) p. 1894.CrossRefGoogle Scholar
23.Letts, S.A.et al., J. Vac. Sci. Technol. A6(3) (1988) p. 1896.CrossRefGoogle Scholar
24.Aubert, J.H., Sandia National Laboratories - Albuquerque, (private communication).Google Scholar
25.Pekala, R.W., Lawrence Livermore National Laboratory, (private communication).Google Scholar
26.Sylvester, A.P., Aubert, J.H., Rand, P.B., Arnold, C. Jr., and Clough, R.L., Polym. Mater. Sci. Eng. 57A (1987) p. 113.Google Scholar
27.Nissen, D., Sandia National Laboratories-Livermore, (private communication).Google Scholar