Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T14:49:05.280Z Has data issue: false hasContentIssue false

Synchrotron-based x-ray absorption spectroscopy for energy materials

Published online by Cambridge University Press:  08 June 2016

Xiaosong Liu
Affiliation:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China; [email protected]
Tsu-Chien Weng
Affiliation:
Center for High Pressure Science & Technology Advanced Research, China; [email protected]
Get access

Abstract

X-ray absorption spectroscopy (XAS) is a widely used characterization technique to explore the local geometric and electronic structures of materials with element specificity. XAS measurements are performed at synchrotron radiation sources that provide brilliant, tunable, and monochromatic energy photons. The advantages of XAS include good elemental, chemical, and orbital sensitivities, which all stem from inherent electron excitation and transition processes. XAS is categorized into soft (<2000 eV) and hard (>5000 eV) x-ray regimes, based on the incident photon energy. Soft x-rays can probe the K-edges of low-Z (atomic number) elements, including Li, C, N, O, and F, and the L-edges of 3d transition metals, whose K-edge is within the hard x-ray regime. All of these elements are essential components of energy materials. This article introduces the principle of XAS and reviews some recent applications in energy storage and energy conversion, illustrating the capabilities of XAS to investigate the fundamental properties of materials from the points of view of atomic and electronic structures, which play crucial roles in understanding the reaction mechanisms in high-performance devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liss, K.-D., Bartels, A., Schreyer, A., Clemens, H., Textures Microstruct. 35, 219 (2003).CrossRefGoogle Scholar
Rehr, J.J., Albers, R.C., Rev. Mod. Phys. 72, 621 (2000).Google Scholar
de Groot, F, Kotani, A., Core Level Spectroscopy of Solids (Taylor & Francis, Hoboken, NJ, 2008).Google Scholar
Armand, M., Tarascon, J.M., Nature 451, 652 (2008).CrossRefGoogle Scholar
Goodenough, J.B., Park, K.-S., J. Am. Chem. Soc. 135, 1167 (2013).CrossRefGoogle Scholar
Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., Mater. Res. Bull. 15, 783 (1980).Google Scholar
Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).CrossRefGoogle Scholar
Thackeray, M.M., Johnson, P.J., Depicciotto, L.A., Bruce, P.G., Goodenough, J.B., Mater. Res. Bull. 19, 179 (1984).Google Scholar
Yoon, W.-S., Chung, K.Y., Oh, K.-H., Kim, K.-B., J. Power Sources 119–121, 706 (2003).Google Scholar
Yoon, W.-S., Kim, K.-B., Kim, M.G., Lee, M.-K., Shin, H.J., Lee, J.-M., Lee, J.-S., Yo, C.-H., J. Phys. Chem. B 106, 2526 (2002).Google Scholar
Liu, X., Liu, J., Qiao, R., Yu, Y., Li, H., Suo, L., Hu, Y., Chuang, Y., Shu, G., Chou, F., Weng, T., Nordlund, D., Sokaras, D., Wang, Y., Lin, H., Barbiellini, B., Bansil, A., Song, X., Liu, Z., Yan, S., Liu, G., Qiao, S., Richardson, T.J., Prendergast, D., Hussain, Z., de Groot, F.M.F., Yang, W., J. Am. Chem. Soc. 134, 13708 (2012).Google Scholar
Yoon, W.-S., Balasubramanian, M., Chung, K.Y., Yang, X.-Q., McBreen, J., Grey, C.P., Fischer, D.A., J. Am. Chem. Soc. 127, 17479 (2005).Google Scholar
Yang, W., Liu, X., Qiao, R., Olalde-Velasco, P., Spear, J.D., Roseguo, L., Pepper, J.X., Chuang, Y.-D., Denlinger, J.D., Hussain, Z., J. Electron. Spectrosc. Relat. Phenom. 190, 64 (2013).Google Scholar
Qiao, R., Wang, Y., Olalde-Velasco, P., Li, H., Hu, Y.-S., Yang, W., J. Power Sources 273, 1120 (2014).CrossRefGoogle Scholar
Zhou, Y.-N., Ma, J., Hu, E., Yu, X., Gu, L., Nam, K.-W., Chen, L., Wang, Z., Yang, X.-Q., Nat. Commun. 5, 5381 (2014).Google Scholar
Gauthier, M., Carney, T.J., Grimaud, A., Giordano, L., Pour, N., Chang, H.-H., Fenning, D.P., Lux, S.F., Paschos, O., Bauer, C., Maglia, F., Lupart, S., Lamp, P., Shao-Horn, Y., J. Phys. Chem. Lett. 6, 4653 (2015).CrossRefGoogle Scholar
Balasubramanian, M., Lee, H.S., Sun, X., Yang, X.Q., Moodenbaugh, A.R., McBreen, J., Fischer, D.A., Fu, Z., Electrochem. Solid-State Lett. 5, A22 (2002).Google Scholar
Delacourt, C., Kwong, A., Liu, X., Qiao, R., Yang, W.L., Lu, P., Harris, S.J., Srinivasan, V., J. Electrochem. Soc. 160, A1099 (2013).Google Scholar
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Nat. Mater. 11, 19 (2011).Google Scholar
Cui, Y., Abouimrane, A., Lu, J., Bolin, T., Ren, Y., Weng, W., Sun, C., Maroni, V.A., Heald, S.M., Amine, K., J. Am. Chem. Soc. 135, 8047 (2013).Google Scholar
Pascal, T.A., Wujcik, K.H., Velasco-Velez, J., Wu, C., Teran, A.A., Kapilashrami, M., Cabana, J., Guo, J., Salmeron, M., Balsara, N., Prendergast, D., J. Phys. Chem. Lett. 5, 1547 (2014).Google Scholar
Wujcik, K.H., Velasco-Velez, J., Wu, C.H., Pascal, T., Teran, A.A., Marcus, M.A., Cabana, J., Guo, J., Prendergast, D., Salmerón, M., Balsara, N.P., J. Electrochem. Soc. 161, A1100 (2014).Google Scholar
Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.J., Zhang, Y., J. Am. Chem. Soc. 133, 18522 (2011).Google Scholar
Centi, G., Perathoner, S., Catal. Today 148, 191 (2009).Google Scholar
Kuhl, K.P., Cave, E.R., Abram, D.N., Jaramillo, T.F., Energy Environ. Sci. 5, 7050 (2012).Google Scholar
Friebel, D., Mbuga, F., Rajasekaran, S., Miller, D.J., Ogasawara, H., Alonso-Mori, R., Sokaras, D., Nordlund, D., Weng, T.-C., Nilsson, A., J. Phys. Chem. C 118, 7954 (2014).Google Scholar
Safonova, O.V., Tromp, M., van Bokhoven, J.A., de Groot, F.M.F., Evans, J., Glatzel, P., J. Phys. Chem. B 110, 16162 (2006).CrossRefGoogle Scholar
Glatzel, P., de Groot, F.M.F., Manoilova, O., Grandjean, D., Weckhuysen, B.M., Bergmann, U., Barrea, R., Phys. Rev. B Condens. Matter 72, 014117 (2005).CrossRefGoogle Scholar
Sette, F., Stohr, J., Hitchcock, A.P., Chem. Phys. Lett. 110, 517 (1984).Google Scholar
Stohr, J., Sette, F., Johnson, A.L., Phys. Rev. Lett. 53, 1684 (1984).Google Scholar
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S., Chem. Rev. 110, 6446 (2010).Google Scholar
Friebel, D., Louie, M.W., Bajdich, M., Sanwald, K.E., Cai, Y., Wise, A.M., Cheng, M.-J., Sokaras, D., Weng, T.-C., Alonso-Mori, R., Davis, R.C., Bargar, J.R., Norskov, J.K., Nilsson, A., Bell, A.T., J. Am. Chem. Soc. 137, 1305 (2015).Google Scholar
Kuehn, T.-J., Hormes, J., Matoussevitch, N., Boennemann, H., Glatzel, P., Inorg. Chem. 53, 8367 (2014).Google Scholar
Grush, M.M., Christou, G., Hamalainen, K., Cramer, S.P., J. Am. Chem. Soc. 117, 5895 (1995).CrossRefGoogle Scholar
Tueysuez, H., Hwang, Y.J., Khan, S.B., Asiri, A.M., Yang, P., Nano Res. 6, 47 (2013).CrossRefGoogle Scholar
Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., Dai, H., Nat. Mater. 10, 780 (2011).CrossRefGoogle Scholar
Jiao, F., Frei, H., Angew. Chem. Int. Ed. 48, 1841 (2009).Google Scholar
Wang, H.-Y., Hung, S.-F., Chen, H.-Y., Chan, T.-S., Chen, H.M., Liu, B., J. Am. Chem. Soc. 138, 36 (2016).Google Scholar
Bunker, G., Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy (Cambridge University Press, New York, 2010).Google Scholar
Velasco-Velez, J.-J., Wu, C.H., Pascal, T.A., Wan, L.F., Guo, J., Prendergast, D., Salmeron, M., Science 346, 831 (2014).Google Scholar
Waluyo, I., Nordlund, D., Bergmann, U., Schlesinger, D., Pettersson, L.G.M., Nilsson, A., J. Chem. Phys. 140, 244506 (2014).Google Scholar
Sokaras, D., Nordlund, D., Weng, T.C., Mori, R.A., Velikov, P., Wenger, D., Garachtchenko, A., George, M., Borzenets, V., Johnson, B., Qian, Q., Rabedeau, T., Bergmann, U., Rev. Sci. Instrum. 83, 043112 (2012).Google Scholar
Nilsson, A., Nordlund, D., Waluyo, I., Huang, N., Ogasawara, H., Kaya, S., Bergmann, U., Naeslund, L.A., Ostrom, H., Wernet, P., Andersson, K.J., Schiros, T., Pettersson, L.G.M., J. Electron. Spectrosc. Relat. Phenom. 177, 99 (2010).Google Scholar
Naslund, L.A., Edwards, D.C., Wernet, P., Bergmann, U., Ogasawara, H., Pettersson, L.G.M., Myneni, S., Nilsson, A., J. Phys. Chem. A 109, 5995 (2005).Google Scholar
Huang, N., Nordlund, D., Huang, C., Bergmann, U., Weiss, T.M., Pettersson, L.G.M., Nilsson, A., J. Chem. Phys. 135, 164509 (2011).Google Scholar
Bergmann, U., Groenzin, H., Mullins, O.C., Glatzel, P., Fetzer, J., Cramer, S.P., Pet. Sci. Technol. 22, 863 (2004).Google Scholar
Glatzel, P., Singh, J., Kvashnina, K.O., van Bokhoven, J.A., J. Am. Chem. Soc. 132, 2555 (2010).Google Scholar
Swarbrick, J.C., Weng, T.-C., Schulte, K., Khlobystov, A.N., Glatzel, P., Phys. Chem. Chem. Phys. 12, 9693 (2010).Google Scholar
Swarbrick, J.C., Kvashnin, Y., Schulte, K., Seenivasan, K., Lamberti, C., Glatzel, P., Inorg. Chem. 49, 8323 (2010).CrossRefGoogle Scholar
Tseng, Y.-T., Chen, C.-H., Lin, J.-Y., Li, B.-H., Lu, Y.-H., Lin, C.-H., Chen, H.-T., Weng, T.-C., Sokaras, D., Chen, H.-Y., Soo, Y.-L., Lu, T.-T., Chem. Eur. J. 21, 17570 (2015).Google Scholar
Lu, T.-T., Weng, T.-C., Liaw, W.-F., Angew. Chem. Int. Ed. 53, 11562 (2014).Google Scholar
Pollock, C.J., DeBeer, S., J. Am. Chem. Soc. 133, 5594 (2011).Google Scholar
Lancaster, K.M., Finkelstein, K.D., DeBeer, S., Inorg. Chem. 50, 6767 (2011).Google Scholar
Delgado-Jaime, M.U., DeBeer, S., Bauer, M., Chem. Eur. J. 19, 15888 (2013).Google Scholar