Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:23:22.189Z Has data issue: false hasContentIssue false

Surface Analysis by Laser Ionization

Published online by Cambridge University Press:  29 November 2013

Get access

Abstract

An overview is presented of a recently developed surface analysis method that combines (1) desorption of neutral atoms and molecules from a sample, typically by sputtering, (2) efficient uniform ionization close to but above the surface by an intense ultraviolet laser beam, and (3) time-of-flight mass spectrometry. This technique, surface analysis by laser ionization, or SALI, provides extremely efficient and sensitive quantitative analysis of surfaces and materials with high depth resolution. Essentially any type of material can be analyzed as evidenced by the examples presented here: the Au-GaAs system, a phosphor-silicate glass, and a bulk polymer.

Type
Materials Microanalysis
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Thomson, J.J., Philos. Mag. 20 (1910) p. 252.Google Scholar
2. See, e.g., Secondary Ion Mass Spectrometry SIMS V, edited by Benninghoven, A., Colton, R.J., Simons, D.S., and Werner, H.W. (Springer-Verlag, Berlin, 1986); and “Fundamentals of Secondary Ion Mass Spectrometry,” by W. Katz and J.G. Newman in this issue of the MRS BULLETIN.CrossRefGoogle Scholar
3.Kovalev, I.D., Maksimov, G.A., Suchkob, A.I., and Larin, N.V., Int. J. Mass. Spectrom. Ion Phys. 227 (1978) p. 101; R.J. Conzemius and J.M. Capellen, Int. J. Mass. Spectrom. Ion Phys. 34 (1980) p. 197.CrossRefGoogle Scholar
4.Honig, R.E., J. Appl. Phys. 29 (1958) p. 549.CrossRefGoogle Scholar
5.Woodyard, J.R. and Cooper, C.B., J. Appl. Phys. 35 (1964) p. 1107.CrossRefGoogle Scholar
6.Oechsner, H. and Gerhard, W., Surf. Sci. 44 (1974) p. 480.CrossRefGoogle Scholar
7.Winograd, N., Baxter, J.P., and Kimock, F.M., Chem. Phys. Lett. 88 (1982) p. 581; F.M. Kimock, J.P. Baxter, D.L. Pappas, P.H. Kobrin, and N. Winograd, Anal. Chem. 56 (1984) p. 2782.CrossRefGoogle Scholar
8.Parks, J.E., Schmitt, H.W., Hurst, G.S., and Fairbank, W.M. Jr., Thin Solid Films 108 (1983) p. 69; M.J. Pellin, C.E. Young, W.F. Calaway, and D.M. Gruen, Surf. Sci. 144 (1984) p. 619; D.L. Donohue, W.H. Christie, D.E. Goeringer, and H.S. McKown, Anal. Chem. 57 (1985) p. 1193.CrossRefGoogle Scholar
9.Gnaser, H., Fleischhauer, J., and Hofer, W.O., Appl. Phys. A 37 (1985) p. 211; O. Ganschow, in Reference 2, p. 79.CrossRefGoogle Scholar
10.Sherman, M.G., Kingsley, J.R., Land, D., Mclver, R.T. Jr., and Hemminger, J.C., J. Vac. Sci. Technol. A 4 (1986) p. 1507.CrossRefGoogle Scholar
11.Becker, C.H. and Gillen, K.T., Anal. Chem. 56 (1984) p. 1671.CrossRefGoogle Scholar
12.Becker, C.H. and Gillen, K.T., J. Vac. Sci. Technol. A 3 (1985) p. 1347.CrossRefGoogle Scholar
13.Lambropoulos, P., Adv. At. Mol. Phys. 12 (1976) p. 87; J. Morellec, D. Normand, and G. Petite, Adv. At. Mol. Phys. 18 (1982) p. 97.CrossRefGoogle Scholar
14.Schueler, B. and Odom, R.W., J. Appl. Phys. 61 (1987) p. 4652.CrossRefGoogle Scholar
15.Mamyrin, B.A., Karataev, V.I., Shmikk, D.V., and Zagulin, V.A., Sov. Phys. JETP 37 (1973) p. 45.Google Scholar
16.Taglauer, E. and Heiland, W., Appl. Phys. 9 (1976) p. 261; T.M. Buck, G.H. Wheatley, and L. Marchut, Phys. Rev. Lett. 51 (1983) p. 43.Google Scholar
17.Becker, C.H., J. Vac. Sci. Technol. A 5 (1987) p. 1181.CrossRefGoogle Scholar
18.Pallix, J.B., Becker, C.H., and Gillen, K.T., Appl. Surf. Sci.(submitted).Google Scholar
19.Becker, C.H. and Gillen, K.T., Appl. Phys. Lett. 45 (1984) p. 1063.CrossRefGoogle Scholar
20.Becker, C.H., in Materials Characterization, edited by Cheung, N.W. and Nicolet, M.-A. (Mater. Res. Soc. Symp. Proc. 69, Pittsburgh, PA, 1986) p. 59.Google Scholar
21.Stahle, C.M., Thomson, D.J., Helms, C.R., Becker, C.H., and Simmons, A., Appl. Phys. Lett. 47 (1985) p. 521.CrossRefGoogle Scholar
22.Williams, P., in Applied Atomic Collision Physics edited by Datz, S. (Academic Press, Orlando, FL, 1983) Vol. 4, p. 327.Google Scholar
23.Van Laar, J. and Huijser, A., J. Vac. Sci. Technol. 13 (1976) p. 769; W.E. Spicer, I. Lindau, P.E. Gregory, C.M. Garner, P. Pianetta, and P.W. Chye, J. Vac. Sci. Technol. 13 (1976) p. 780.CrossRefGoogle Scholar
24.Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y., and Lindau, I., J. Vac. Sci. Technol. 16 (1979) p. 1427; W.E. Spicer, I. Lindau, P.R. Skeath, C.Y. Su, and P.W. Chye, Phys. Rev. Lett. 44 (1980) p. 420.CrossRefGoogle Scholar
25.Newman, N., Petro, W.G., Kendelewicz, T., Pan, S.H., Eglash, S.J., and Spicer, W.E., J. Appl. Phys. 57 (1985) p. 1247.CrossRefGoogle Scholar
26.Newman, N., Spicer, W.E., and Weber, E.R., J. Vac. Sci. Technol. B 5 p. 1020, and literature cited.CrossRefGoogle Scholar
27.Newman, N., Chin, K.K., Petro, W.G., Kendelewicz, T., Williams, M.D., McCants, C.E., and Spicer, W.E., J. Vac. Sci. Technol. A 3 (1985) p. 996, and literature cited.CrossRefGoogle Scholar
28.Liliental-Weber, Z., Gronsky, R., Washburn, J., Newman, N., Spicer, W.E., and Weber, E.R., J. Vac. Sci. Technol. B 4 (1986) p. 912.CrossRefGoogle Scholar
29.Liliental-Weber, Z., Weber, E.R., Newman, N., Spicer, W.E., Gronsky, R., and Washburn, J. in Defects in Semiconductors, edited by von Barbeleben, H.J. (Materials Science Press, Switzerland, 1986) Vol. 1012, p. 1223; D. Coulman, N. Newman, G.A. Reid, Z. Liliental-Weber, E.R. Weber, and W.E. Spicer, J. Vac. Sci. Technol. B 5 (in press).Google Scholar
30.Weber, E.R., Ennen, H., Kaufmann, U., Windscheif, J., Schneider, J., and Wosinski, T., J. Appl. Phys. 53 (1982) p. 6140; E.R. Weber and J. Schneider, Physica B 116 (1983) p. 398.CrossRefGoogle Scholar
31.Bletsos, I.V., Hercules, D.M., Benninghoven, A., and Greifendorf, D., in Ref. 2, p. 538; I.J. Amster, J. A. Loo, J.J.P. Furlong, and F.W. McLafferty, Anal. Chem. 59 (1987) p. 313; C.L. Wilkins, D.A. Weil, C.L.C. Yang, and C.F. Ijames, Anal. Chem. 57 (1985) p. 520; R.J. Cotter, J.P. Honovich, J.K. Olthoff, and R.P. Lattimer, Macromol. 19 (1986) p. 2996.Google Scholar
32.Polymer Handbook, 2nd ed., edited by Brandrup, J. and Immergut, E.H. (Wiley Interscience, New York, 1975) Section II, p. 473.Google Scholar
33.Kung, A.H., Young, J.F., and Harris, S.E., Appl. Phys. Lett. 22 (1973) p. 301; (errata) 28 (1976) p. 239; L.J. Zych and J.F. Young, IEEE J. Quantum Electron. QE-14 (1978) p. 147; A.H. Kung, Opt. Lett. 8 (1983) p. 24.CrossRefGoogle Scholar
34. See Reference 2, especially Part VIII.Google Scholar
35.Morgan, A.E., Nucl. Instrum. Meth. Phys. Res. 218 (1983) p. 401.CrossRefGoogle Scholar
36.Becker, C.H., Scanning Electron Microsc. IV (1986), p. 1267.Google Scholar