Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T20:01:09.253Z Has data issue: false hasContentIssue false

Superradiant emission from self-assembled light emitters: From molecules to quantum dots

Published online by Cambridge University Press:  09 October 2020

G. Rainò
Affiliation:
ETH Zürich, and Empa Dübendorf, Switzerland; [email protected]
H. Utzat
Affiliation:
Stanford University, USA; [email protected]
M.G. Bawendi
Affiliation:
Massachusetts Institute of Technology, USA; [email protected]
M.V. Kovalenko
Affiliation:
ETH Zürich, and Empa Dübendorf, Switzerland; [email protected]
Get access

Abstract

Colloidal synthesis methods and ultrahigh-vacuum molecular beam epitaxy can tailor semiconductor-based nanoscale single emitters—quantum dots—as the building blocks for classical optoelectronic devices, such as lasers, light-emitting devices, and display technologies. These novel light sources have a basic resemblance of luminescent organic molecules, individually and in the aggregated forms. Highly ordered superstructures of quantum dots, obtained via scalable bottom-up self-assembly, exhibit diverse collective phenomena, such as band-like charge transport or superradiant emission. Superradiance emerges from coherent coupling of several emitters via a common radiation field resulting in a single giant dipole leading to short (sub-nanosecond) and intense (proportional to the squared number of coupled emitters) bursts of light. In this article, we review the basic principles and progress in the development of superradiant emitters with organic molecules and inorganic quantum dots, in view of their integration into classical and novel quantum light sources.

Type
Functional Materials and Devices by Self-Assembly
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

MRS Bull. 23 (2), (1998).Google Scholar
Ekimov, A.I., Onushchenko, A.A., Sov. Phys. Semicond. 16, 775 (1982).Google Scholar
Efros, A.L., Efros, A.L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
MRS Bull. 38 (9), (2013).Google Scholar
Adachi, C., Baldo, M.A., Thompson, M.E., Forrest, S.R., J. Appl. Phys. 90, 5048 (2001).CrossRefGoogle Scholar
Segal, M., Singh, M., Rivoire, K., Difley, S., Van Voorhis, T., Baldo, M.A., Nat. Mater. 6, 374 (2007).CrossRefGoogle Scholar
Zhang, Q., Li, B., Huang, S., Nomura, H., Tanaka, H., Adachi, C., Nat. Photonics 8, 326 (2014).CrossRefGoogle Scholar
Wei, Q., Fei, N., Islam, A., Lei, T., Hong, L., Peng, R., Fan, X., Chen, L., Gao, P., Ge, Z., Adv. Opt. Mater. 6, 1800512 (2018).CrossRefGoogle Scholar
Zou, Y., Gong, S., Xie, G., Yang, C., Adv. Opt. Mater. 6, 1800568 (2018).CrossRefGoogle Scholar
Guo, F., Karl, A., Xue, Q.-F., Tam, K.C., Forberich, K., Brabec, C.J., Light Sci. Appl. 6, e17094 (2017).CrossRefGoogle Scholar
Chu, X.-L., Götzinger, S., Sandoghdar, V., Nat. Photonics 11, 58 (2017).CrossRefGoogle Scholar
Senellart, P., Solomon, G., White, A., Nat. Nanotechnol. 12, 1026 (2017).CrossRefGoogle Scholar
Siyushev, P., Stein, G., Wrachtrup, J., Gerhardt, I., Nature 509, 66 (2014).CrossRefGoogle Scholar
Welton, T.A., Phys. Rev. 74, 1157 (1948).CrossRefGoogle Scholar
Kuhlmann, A.V., Prechtel, J.H., Houel, J., Ludwig, A., Reuter, D., Wieck, A.D., Warburton, R.J., Nat. Commun. 6, 8204 (2015).CrossRefGoogle Scholar
Dufaker, D., Mereni, L.O., Karlsson, K.F., Dimastrodonato, V., Juska, G., Holtz, P.O., Pelucchi, E., Appl. Phys. Lett. 98, 251911 (2011).CrossRefGoogle Scholar
Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.-S., Fukumura, D., Jain, R.K., Bawendi, M.G., Nat. Mater. 12, 445 (2013).CrossRefGoogle Scholar
Utzat, H., Shulenberger, K.E., Achorn, O.B., Nasilowski, M., Sinclair, T.S., Bawendi, M.G., Nano Lett. 17, 6838 (2017).CrossRefGoogle Scholar
Salvador, M.R., Graham, M.W., Scholes, G.D., J. Chem. Phys. 125, 184709 (2006).CrossRefGoogle Scholar
Cong, K., Zhang, Q., Wang, Y., Timothy Noe, G. II, Belyanin, A., Kono, J., J. Opt. Soc. Am. B 33, 80 (2016).CrossRefGoogle Scholar
Dicke, R.H., Phy. Rev. 93, 99 (1954).CrossRefGoogle Scholar
Jahnke, F., Gies, C., Aßmann, M., Bayer, M., Leymann, H.A.M., Foerster, A., Wiersig, J., Schneider, C., Kamp, M., Höfling, S., Nat. Commun. 7, 11540 (2016).CrossRefGoogle Scholar
Skribanowitz, N., Herman, I.P., MacGillivray, J.C., Feld, M.S., Phys. Rev. Lett. 30, 309 (1973).CrossRefGoogle Scholar
Miyajima, K., Kagotani, Y., Saito, S., Ashida, M., Itoh, T., J. Phys. Condens. Matter 21, 195802 (2009).CrossRefGoogle Scholar
Malcuit, M.S., Maki, J.J., Simkin, D.J., Boyd, W.R., Phys. Rev. Lett. 59, 1189 (1987).CrossRefGoogle Scholar
Timothy Noe, G. II, Kim, J.-H., Lee, J., Wang, Y., Wójcik, A.K., McGill, S.A., Reitze, D.H., Belyanin, A.A., Kono, J., Nat. Phys. 8, 219 (2012).CrossRefGoogle Scholar
Würthner, F., Kaiser, T.E., Saha-Möller, C.R., Angew. Chem. Int. Ed. 50, 3376 (2011).Google Scholar
Kasha, M., Radiat. Res. 20, 55 (1963).CrossRefGoogle Scholar
Hestand, N.J., Spano, F.C., Acc. Chem. Res. 50, 341 (2017).CrossRefGoogle Scholar
Moll, J., Daehne, S., Durrant, J.R., Wiersma, D.A., J. Chem. Phys. 102, 6362 (1995).CrossRefGoogle Scholar
Stangl, T., Wilhelm, P., Remmerssen, K., Höger, S., Vogelsang, J., Lupton, J.M., Proc. Natl. Acad. Sci. U.S.A. 112, E5560 (2015).CrossRefGoogle Scholar
Hettich, C., Schmitt, C., Zitzmann, J., Kühn, S., Gerhardt, I., Sandoghdar, V., Science 298, 385 (2002).CrossRefGoogle Scholar
Heindel, T., Thoma, A., von Helversen, M., Schmidt, M., Schlehahn, A., Gschrey, M., Schnauber, P., Schulze, J.H., Strittmatter, A., Beyer, J., Rodt, S., Carmele, A., Knorr, A., Reitzenstein, S., Nat. Commun. 8, 14870 (2017).CrossRefGoogle Scholar
Kim, J.-H., Aghaeimeibodi, S., Richardson, C.J.K., Leavitt, R.P., Waks, E., Nano Lett. 18, 4734 (2018).CrossRefGoogle Scholar
Grim, J.Q., Bracker, A.S., Zalalutdinov, M., Carter, S.G., Kozen, A.C., Kim, M., Kim, C.S., Mlack, J.T., Yakes, M., Lee, B., Gammon, D., Nat. Mater. 18, 963 (2019).CrossRefGoogle Scholar
Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., Yang, R.X., Walsh, A., Kovalenko, M.V., Nano Lett. 15, 3692 (2015).CrossRefGoogle Scholar
Shamsi, J., Urban, A.S., Imran, M., De Trizio, L., Manna, L., Chem. Rev. 119, 3296 (2019).CrossRefGoogle Scholar
Akkerman, Q.A., Rainò, G., Kovalenko, M.V., Manna, L., Nat. Mater. 17, 394 (2018).CrossRefGoogle Scholar
Li, Y., Ding, T., Luo, X., Chen, Z., Liu, X., Lu, X., Wu, K., Nano Res. 12, 619 (2019).10.1007/s12274-018-2266-7CrossRefGoogle Scholar
Brandt, R.E., Stevanović, V., Ginley, D.S., Buonassisi, T., MRS Commun. 5, 265 (2015).CrossRefGoogle Scholar
Fu, M., Tamarat, P., Huang, H., Even, J., Rogach, A.L., Lounis, B., Nano Lett. 17, 2895 (2017).CrossRefGoogle Scholar
Rainò, G., Nedelcu, G., Protesescu, L., Bodnarchuk, M.I., Kovalenko, M.V., Mahrt, R.F., Stöferle, T., ACS Nano 10, 2485 (2016).CrossRefGoogle Scholar
Becker, M.A., Vaxenburg, R., Nedelcu, G., Sercel, P.C., Shabaev, A., Mehl, M.J., Michopoulos, J.G., Lambrakos, S.G., Bernstein, N., Lyons, J.L., Stöferle, T., Mahrt, R.F., Kovalenko, M.V., Norris, D.J., Rainò, G., Efros, A.L., Nature 553, 189 (2018).CrossRefGoogle Scholar
Utzat, H., Sun, W., Kaplan, A.E.K., Krieg, F., Ginterseder, M., Spokoyny, B., Klein, N.D., Shulenberger, K.E., Perkinson, C.F., Kovalenko, M.V., Bawendi, M.G., Science 363, 1068 (2019).CrossRefGoogle Scholar
Rainò, G., Becker, M.A., Bodnarchuk, M.I., Mahrt, R.F., Kovalenko, M.V., Stöferle, T., Nature 563, 671 (2018).CrossRefGoogle Scholar
Bradac, C., Johnsson, M.T., Breugel, M.v., Baragiola, B.Q., Martin, R., Juan, M.L., Brennen, G.K., Volz, T., Nat. Commun. 8, 1205 (2017).CrossRefGoogle Scholar
MRS Bull. 38 (2), (2013).Google Scholar
Moerner, W.E., Angew. Chem. Int. Ed. 54, 8067 (2015).Google Scholar
Muñoz, C.S., del Valle, E., Tudela, A.G., Müller, K., Lichtmannecker, S., Kaniber, M., Tejedor, C., Finley, J.J., Laussy, F.P., Nat. Photonics 8, 550 (2014).CrossRefGoogle Scholar
Aspuru-Guzik, A., Walther, P., Nat. Phys. 8, 285 (2012).CrossRefGoogle Scholar
Huh, J., Guerreschi, G.G., Peropadre, B., McClean, J.R., Aspuru-Guzik, A., Nat. Photonics 9, 615 (2015).CrossRefGoogle Scholar