Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-20T17:39:36.097Z Has data issue: false hasContentIssue false

Studies of Ion Transport in AgCl and AgBr

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Silver chloride and silver bromide, like sodium chloride and sodium bromide, are ionic crystals with the rock-salt structure, but despite the similarity in the crystal radii of Ag+ (1.29 Å) and Na+ (1.16 Å) the properties of these silver halides are very different from those of the corresponding sodium salts. Much of this difference is due to the filled 4d shell in the electron configuration of Ag+, which is responsible for the higher polarizability of Ag+ (2.37 − 2.44 Å3) than Na+ (0.41 Å3 and for the tendency of Ag+ to undergo quadrupolar deformation.

Associated with the high polarizability of Ag+ are the large van der Waals cation-cation and cation-anion interactions in AgCl and AgBr and the consequent high cohesive energies of these silver salts (9.26 eV and 9.12 eV, respectively). Bear in mind, however, that the large van der Waals coefficients that result from empirical fitting of two-body model crystal potentials to crystal properties may be partly due to the model attempting to simulate features of the real crystal which the model does not really include, such as many-body interactions. That such many-body interactions are important in AgCl and AgBr is evident from the large violations of the Cauchy relation between the elastic constants, C12 = C44, which ought to hold when each ion is at a center of cubic symmetry and the inter-ionic forces are derivable from two-body potentials.

Type
Silver Halides in Photography
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shannon, R.D., Acta Crystallogr. Sect. A 32 (1976) p. 751.CrossRefGoogle Scholar
2.Tessman, R., Kahn, A.H., and Shockley, W., Phys. Rev. 92 (1953) p. 890.CrossRefGoogle Scholar
3.Fischer, K., Bilz, H., Haberkorn, R., and Weber, W., Phys. Status Solidi B 54 (1972) p. 285.CrossRefGoogle Scholar
4.Fischer, K., Phys. Status Solidi B 66 (1974) p. 295.CrossRefGoogle Scholar
5.Dorner, B., der Osten, W. von, and Bührer, W., J. Phys. C 9 (1976) p. 723.Google Scholar
6.Kleppman, W.G., J. Phys. C 9 (1976) p. 2285.Google Scholar
7.Kleppman, W.G. and Bilz, H., Commun. Phys. 1 (1976) p. 105.Google Scholar
8.Jacobs, P.W.M., Corish, J., and Catlow, C.R.A., J. Phys. C 13 (1980) p. 1977.Google Scholar
9.Catlow, C.R.A., Corish, J., and Jacobs, P.W.M., J. Phys. C 12 (1979) p. 3433.Google Scholar
10.Jacobs, P.W.M., Corish, J., and Devlin, B.A., Photogr. Sci. Eng. 26 (1982) p. 50.Google Scholar
11.Tosi, M.P., in Solid State Phy., Vol. 16, edited by Setiz, F. and Turnbull, D. (Academic Press, New York, 1964) p. 5.Google Scholar
12.Bucher, M., Phys. Rev. B 30 (1984) p. 947.CrossRefGoogle Scholar
13.Kleppman, W.G. and Weber, W., Phys. Rev. B 20 (1979) p. 1669.CrossRefGoogle Scholar
14.Friauf, R.J., J. Phys. (Paris) 38 (1977) p. 1077.CrossRefGoogle Scholar
15.Develin, B. A. and Corish, J., J. Phys. C. 20 (1987) p. 705.CrossRefGoogle Scholar
16.Aboagye, J.K. and Friauf, R.J., Phys. Rev. B 11 (1975) p. 1654.CrossRefGoogle Scholar
17.Corish, J. and Jacobs, P.W.M., J. Phys. Chem. Solids 33 (1972) p. 1799.CrossRefGoogle Scholar
18.Corish, J. and Mulcahy, D.C.A., J. Phys. C 13 (1980) p. 6459.Google Scholar
19.Kao, K.J., PhD thesis, University of Kansas, 1978.Google Scholar
20.Friauf, R.J. in The Physics of Latent Image Formation in Silver Halides, Proc. Int. Symp. Trieste (1983) (World Scientific, Singapore, 1984).Google Scholar
21.Moscinski, J. and Jacobs, P.W.M., Proc. Roy. Soc. A 398 (1975) p. 141.Google Scholar
22.Catlow, C.R.A., Corish, J., Diller, K.M., Jacobs, P.W.M., and Norgett, M.J., J. Phys. (Paris) 37 (1976) C7253.Google Scholar
23.Batra, A.P. and Slifkin, L.M., Phys. Rev. B 12 (1975) p. 3473.CrossRefGoogle Scholar
24.Batra, A.P. and Slifkin, L.M., J. Phys. Chem. Solids 38 (1977) p. 687.CrossRefGoogle Scholar
25.Cardegna, P.A. and Lasker, A.L., J. Phys. C 16 (1983) p. 2075.Google Scholar
26.Batra, A.P. and Slifkin, L.M., J. Phys. Chem. Solids 37 (1976) p. 963.CrossRefGoogle Scholar
27.Cardegna, P.A. and Laskar, A.L., Phys. Rev. B 24 (1981) p. 530.CrossRefGoogle Scholar
28.Bannon, N.M., Corish, J., and Jacobs, P.W.M., Radiation Effects 75 (1983) p. 7.CrossRefGoogle Scholar
29.Catlow, C.R.A., Corish, J., Harding, J.H., and Jacobs, P.W.M., Phil. Mag. A 55 (1987) p. 481.CrossRefGoogle Scholar
30.Jacobs, P.W.M., Cryst. Latt. Def. Amoryh. Mat., in press.Google Scholar
31.Harding, J.H., Cryst. Latt. Def. Amoryh. Mat., in press.Google Scholar
32.Harding, J.H. and Stoneham, A.M., Phil. Mag. B 43 (1981) p. 705.CrossRefGoogle Scholar
33.Lansiart, S. and Beyeler, M., J. Phys. Chem. Solids 36 (1975) p. 703.CrossRefGoogle Scholar
34.Gillan, M.J. and Jacobs, P.W.M., Phys. Rev. B 28 (1983) p. 759.CrossRefGoogle Scholar
35.Harding, J.H., Phys. Rev. B 32 (1985) p. 6861.CrossRefGoogle Scholar
36.Allan, N.L., Mackrodt, W.C., and Leslie, M., Adv. Ceramics 23 (1987) p. 257.Google Scholar
37.Kurnick, S.W., J. Chem. Phys. 20 (1952) p. 218.CrossRefGoogle Scholar
38.Mellander, B-E. and Lazarus, D., Phys. Rev. B 29 (1984) p. 2148.CrossRefGoogle Scholar
39.Baetzold, R.C., Catlow, C.R.A., Corish, J., Healy, F. M., Jacobs, P.W.M., Leslie, M., and Tan, Y.T., J. Phys. Chem. Solids, in press.Google Scholar
40.Healy, F.M. and Leslie, M., to be published.Google Scholar
41.Moisar, E. and Granzer, F., Photog. Sci. Eng. 26 (1982) p. 1.Google Scholar
42.Tan, Y.T. and Baetzold, R.C., Progress in Basic Principles of Imaging Systems (Friedr. Vieweg & Sohn, Braunschweig, 1987) p. 179; Surf. Sci. 195 (1988) p. 579.Google Scholar