Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:43:46.377Z Has data issue: false hasContentIssue false

Structure of Mesoporous Aerogels

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Several emerging technologies depend on the development of porous materials with pore dimensions in the nanometer range (1 nm = 10 Å). Based on the canonical classification scheme, such materials are defined as “mesoporous materials.” Specialty uses, such as separation applications, require porosities engineered to meet stringent pore-size requirements, particularly for separating high-boiling-temperature or-ganics. In addition, commodity products, such as high-performance thermal insulation, await credible manufacturing methods to produce fine-scale pores. Finally, information discovered during the development of mesoporous materials could be helpful in finding new strategies to generate void-free ceramic materials by reverse engineering.

Although several methods exist to generate nanometer porosity, our ability to tailor porosity for specific applications is still primitive. Because we lack adequate structural data and models for pore formation, the relationship between synthetic protocol and pore structure remains enigmatic.

Type
Engineered Porous Materials
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity (Academic Press, New York, 1982).Google Scholar
2.Aubert, J.H. and Clough, R.L., Polymer 26 (1985) p. 2047.CrossRefGoogle Scholar
3.LeMay, J.D., Hopper, R.W., Hrubesh, L.W., and Pekala, R., MRS Bulletin xv (12) (1990) p. 19.CrossRefGoogle Scholar
4.Smith, D.M., Deshpande, R., and Brinker, C.J., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992) p. 567.Google Scholar
5.Deshpande, R., Smith, D.M., and Brinker, C.J., U.S. Patent No. Application 08,055,069 (1991).Google Scholar
6.Teichner, S.J., CHEMTECH 21 (6) (1991) p. 372.Google Scholar
7.Smith, D.M., Hua, D-W., and Earl, W.L., MRS Bulletin xix (4) (1994).Google Scholar
8.Boukenter, A., Champagnon, D., Dumas, J., Duval, E., Quinson, J.F., Rousset, J.L., Serughetti, J., Etienne, S., and Mai, C., J. Phys. Coll. 24 C-4 (1989) p. 133.Google Scholar
9.Chaput, F., Lecomte, A., Dauger, A., and Boilot, J.P., J. Phys. Coll. 24 C-4 (1989) p. 137.Google Scholar
10.Emmerling, A. and Fricke, J., J. Non-Cryst. Solids 145 (1992) p. 113.CrossRefGoogle Scholar
11.Foret, M., Pelous, J., Vacher, R., and Marignan, J., J. Non-Cryst. Solids 145 (1992) p. 133.CrossRefGoogle Scholar
12.Posselt, D., Pedersen, J.S., and Mortensen, K., J. Non-Cryst. Solids 145 (1992) p. 128.CrossRefGoogle Scholar
13.Schaefer, D.W., Martin, J.E., Hurd, A.J., and Keefer, K.D., in Physics of Finely Divided Matter, edited by Boccara, N. and Daoud, M. (Springer-Verlag, Berlin, 1985) p. 31.CrossRefGoogle Scholar
14.Schaefer, D.W. and Keefer, K.D., Phys. Rev. Lett. 56 (1986) p. 2199.CrossRefGoogle Scholar
15.Vacher, R., Woignier, T., Pelous, J., and Courtens, E., Phys. Rev. B37 (1988) p. 6500.CrossRefGoogle Scholar
16.Vacher, R., Woignier, T., Phalippou, J., Pelous, J., and Courtens, E., J. Phys. Coll. 24 (1989) p. 127.Google Scholar
17.Keefer, K.D. and Schaefer, D.W., Phys. Rev. Lett. 56 (1986) p. 2376.CrossRefGoogle Scholar
18.Schaefer, D.W., MRS Bulletin xiii (2) (1988) p. 22.CrossRefGoogle Scholar
19.Schmidt, P.W., in The Fractal Approach to Heterogeneous Chemistry, edited by Avnir, D. (John Wiley & Sons, New York, 1989) p. 67.Google Scholar
20.Livage, J. and Sanchez, C., J. Non-Cryst. Solids 145 (1992) p. 11.CrossRefGoogle Scholar
21.Mehrotra, R.C., J. Non-Cryst. Solids 145 (1992) p. 1.CrossRefGoogle Scholar
22.Schaefer, D.W., J. Phys. Coll. (Les Wis Cedex, Trance) 24 C4 (1988) p. 121.Google Scholar
23.Schaefer, D.W, Brinker, C.J., Wilcoxon, J.P., Wu, D.Q., Phillips, J.C., and Chu, B., in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988) p. 691.Google Scholar
24.Brinker, C.J., Keefer, K.D., Schaefer, D.W., and Ashley, C.S., J. Non-Cryst. Solids 48 (1982) p. 47.CrossRefGoogle Scholar
25.Schaefer, D.W. and Keefer, K.D., Phys. Rev. Lett. 53 (1984) p. 1383.CrossRefGoogle Scholar
26.Schaefer, D.W. and Keefer, K.D., in Better Ceramics Through Chemistry, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 32, North-Holland, New York, 1984) p. 1.Google Scholar
27.Tillotson, T.M., Hrubesh, L.W., and Thomas, I.M., see Reference 23, p. 685.Google Scholar
28.Tillotson, T.M. and Hrubesh, L.W., J. Non-Cryst. Solids 145 (1992) p. 44.CrossRefGoogle Scholar
29.Keefer, K.D., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986) p. 295.Google Scholar
30.Bale, H.D. and Schmidt, P.W., Phys. Rev. Lett. 53 (1984) p. 596.CrossRefGoogle Scholar
31.Keefer, K.D., see Reference 26, p. 15.Google Scholar
32.Schaefer, D.W., Richter, D., Farago, B., Brinker, C.J., Ashley, C.S., Olivier, B.J., and Seeger, P., in Neutron Scattering in Materials Science, edited by Shapiro, S.M., Moss, S.C. and Jorgensen, J.D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990) p. 355.Google Scholar
33.Schaefer, D.W., Keefer, K.D., and Brinker, C.J., Polymer Preprints 24 (1983) p. 239.Google Scholar
34.Schaefer, D.W., Science 243 (1989) 1023.CrossRefGoogle Scholar
35.Forrest, S.R. and Witten, T.A., J. Phys. A 12 (1979) p. 109.Google Scholar
36.Schaefer, D.W. and Keefer, K.D., see Reference 29, p. 277.Google Scholar
37.Schaefer, D.W., Olivier, B.J., Ashley, C.S., Beaucage, G., Richter, D., Farago, B., Frick, B., and Fischer, D.A., J. Non-Cryst. Solids (1994).Google Scholar
38.Keefer, K.D., in Silicon-Based Polymer Science, edited by Ziegler, J.M. and Fearon, F.W.G. (Advances in Chemistry, American Chemical Society, Washington, DC, 1990) p. 227.Google Scholar
39.Pekala, R.W. and Schaefer, D.W., Macro-molecules 26 (1993) p. 5487.CrossRefGoogle Scholar
40.de Gennes, P.G.J. Phys. Lett. (Paris) 40 (1979) p. 69.Google Scholar
41.Ulibarri, T., Beaucage, G.B., Schaefer, D.W., Olivier, B.J., and Assink, R.A., in Submicron Multiphase Materials, edited by Baney, R.H., Gilliom, L.R., Hirano, S.-I., and Schmidt, H.K. (Mater. Res. Soc. Symp. Proc. 274, Pittsburgh, PA, 1992) p. 85.Google Scholar
42.Aubert, J.H., Cellular Plastics 24 (1988) p. 132.CrossRefGoogle Scholar
43.Porod, G., Kolloid-Z 124 (1951) p. 83.CrossRefGoogle Scholar
44.Pekala, R.W. and Ward, R.L., Polymer Preprints 31 (1990) p. 167.Google Scholar
45.Werstler, D.D., Polymer 27 (1986) p. 757.CrossRefGoogle Scholar
46.Chujo, Y., Ihara, E., Kure, S., and Saegusa, T., Macromolecules 26 (1993) p. 5681.CrossRefGoogle Scholar
47.Loy, D.A., Buss, R.J., Assink, R.A., Shea, K.J., and Oviatt, H., Polymer Preprints 34 (1993) p. 244.Google Scholar
48.Roger, C. and Hampden-Smith, M.J., CHEMTECH 23 (10) (1993) p. 26.Google Scholar
49.Chandler, C.D., Roger, C., and Hampden-Smith, M.J., Chemical Reviews 93 (1993) p. 1205.CrossRefGoogle Scholar
50.Schaefer, D.W., Pekala, R., and Hrubesh, L.R., to be published (1994).Google Scholar