Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T09:09:30.488Z Has data issue: false hasContentIssue false

Structure and Strength of Multilayers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Nanometer-scale multilayer materials exhibit a wealth of interesting structural and mechanical property behaviors. Physical-vapor-deposition technology allows almost unlimited freedom to choose among elements, alloys, and Compounds as layering constituents and to design and produce materials with compositional and structural periodicities approaching the atomic Scale. These materials have tremendous interface area density, approaching 106 mm/mm3, so that a Square centimeter area of a one-micron-thick multilayer film with a bilayer period of 2 nm has an interface area of roughly 1,000 cm2. Hence interfacial effects can dominate multilayer structure and properties leading to unusually large strains and frequently stabilization of metastable structures. The atomic-scale layering of different materials also leads to very high hardnesses and good wear resistance. These materials are a test-bed for examination of the fundamental aspects of phase stability and for exploring mechanical strengthening mechanisms. They are also becoming increasingly interesting for applications such as hard coatings, x-ray optical elements, in microelectromechanical Systems (MEMS), and in magnetic recording media and heads.

In this article, we review some of the interesting structures and mechanical properties that have been observed in nanometer-scale artificial multilayer structures.

Superlattice thin films are readily deposited by vapor-phase techniques such as sputter deposition, evaporation, and chemical vapor deposition, as well as by electrochemical deposition. Superlattice deposition Systems are similar to conventional film deposition Systems, except for the provision to modulate the fluxes and thereby produce alternating super-lattice layers.

Type
Mechanical Behavior of Nanostructured Materials
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mirkarimi, P.B., Shinn, M., and Barnett, S.A., J. Vac. Sci. Technol. A 10 (1992) p. 75.CrossRefGoogle Scholar
2.Payne, A.P., Clemens, B.M., and Brennan, S.M., Rev. Sci. Instrum. 63 (1992) p. 1147.CrossRefGoogle Scholar
3.Lairson, B.M., Visokay, M.R., Sinclair, R., Hagstroni, S., and Clemens, B.M., Appl. Phys. Lett. 61 (1992) p. 1390.CrossRefGoogle Scholar
4.Daniels, B.J., PhD thesis, Stanford University, 1995.Google Scholar
5.Oliver, W.C., Hutchings, R., and Pethica, J.B., ASTM Spec. Tech. Pub. 889 (1986) p. 90.Google Scholar
6.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 (1992) p. 1564.CrossRefGoogle Scholar
7.Fabes, B.D., Oliver, W.C., McKee, R.A., and Walker, F.J., J. Mater. Res. 7 (1992) p. 3056.CrossRefGoogle Scholar
8.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 (1986) p. 601.CrossRefGoogle Scholar
9.Fullerton, E.E., Schuller, J.K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45 (1992) p. 9292.CrossRefGoogle Scholar
10.Fullerton, E.E., Schuller, J.K., Vanderstraeten, H., and Bruynseraede, Y., MRS Bulletin XVII (1992) p. 33.CrossRefGoogle Scholar
11.Clemens, B.M. and Gay, J.G., Phys. Rev. B 35 (1987) p. 9337.CrossRefGoogle Scholar
12.Daniels, B.J., Nix, W.D., and Clemens, B.M., in Polycrystalline Thin Films—Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M.A., Floro, j.A., Sinclair, R., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, 1994) p. 549.Google Scholar
13.Lu, Y-C., Kung, H., Nastasi, M.A., Necker, C.T., Hollander, M.G., Peralta, P.D., and Mitchell, T.E., J. Vac. Sci. Technol. submitted 1998.Google Scholar
14.Lu, Y-C., Kung, H., Griffin, A.J. Jr., Nastasi, M.A., and Mitchell, T.E.J. Mater. Res. 12 (1997) p. 1939.CrossRefGoogle Scholar
15.Kung, H., Lu, Y-C., Griffin, A.J. Jr., Nastasi, M.A., Mitchell, T.E., and Embury, J.D., Appl. Phys. Lett. 71 (1997) p. 2103.CrossRefGoogle Scholar
16.Misra, A., Kung, H., Mitchell, T.E., Jervis, T., and Nastasi, M.A., in Thin Films: Stresses and Mechanical Properties VII, edited by Cammarata, R.C, Busso, E.P., Nastasi, M.A., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998).Google Scholar
17.Daniels, B.J., Nix, W.D., and Clemens, B.M., in Thin Films: Sresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, 1995) p. 373.Google Scholar
18.English, G.R., Simenson, G.F., Clemens, B.M., and Nix, W.D., Thin Films: Sresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, 1995) p. 363.Google Scholar
19.Madan, A., Wang, Y-Y., Barnett, S.A., Engstrom, C., Ljungcrantz, H., Hultman, L., and Grimsditch, M., J. Appl. Phys. 84 (1998) p. 776.CrossRefGoogle Scholar
20.Hultman, L., Shinn, M., Mirkarimi, P.B., and Barnett, S.A., J. Cryst. Growth 135 (1994) p. 309.CrossRefGoogle Scholar
21.Payne, A.P., Nix, W.D., Lairson, B.M., and Clemens, B.M., Phys. Rev. B 47 (13) (1993) p. 730.Google Scholar
22.Payne, A.P., Lairson, B.M., Brennan, S.M., Daniels, B.J., Rensing, N.M., and Clemens, B.M., Phys. Rev. B (16) p. 16064.Google Scholar
23.Bain, J.A., Chyung, L.J., Brennan, S.M., and Clemens, B.M., Phys. Rev. B 44 (1991) p. 1184.CrossRefGoogle Scholar
24.Chu, X., PhD thesis, Northwestern University, 1995.Google Scholar
25.Wu, M.L., Lin, X.W., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., J. Vac. Sci. Technol. A 15 (1997) p. 946.CrossRefGoogle Scholar
26.Li, D., Lin, X.W., Cheng, S.C., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., Appl. Phys. Lett. 68 (1996) p. 1211.CrossRefGoogle Scholar
27.Goodman, S.R., Brenner, S.S., and Low, J.T., Metall. Trans. 4 (1973) p. 2363.CrossRefGoogle Scholar
28.Heinrich, B., Arrott, A.S., Cochran, J.F., Celinski, Z., and Myrtle, K., in Science and Technology of Nanostructured Magnetic Materials, edited by Hadjipanayis, G.C and Prinz, G.A. (Plenum Press, New York, 1991) p. 15.CrossRefGoogle Scholar
29.Schmidt, C., Ernst, F., Finnis, M.W., and Vitek, V., Phys. Rev. Lett. 75 (1995) p. 2160.CrossRefGoogle Scholar
30.El-Batanouny, M. and Strongin, M., Phys. Rev. B 31(1985) p. 4798.CrossRefGoogle Scholar
31.Ruckman, M.W., Strongin, M., and Pan, X. in Physical and Chemical Properties of Thin Metal Overlayers and Alloy Surfaces, edited by Zehner, D.M. (Mater. Res. Soc. Symp. Proc. 83, Pittsburgh, 1987) p. 85.Google Scholar
32.Hufnagel, T.C., Kautzky, M.C., Daniels, B.J., and Clemens, B.M., J. Appl. Phys. In press.Google Scholar
33.Baker, S.P., Small, M.K., Vlassak, J.J., Daniels, B.J., and Nix, W.D., in Proc. NATO Advanced Study Institute, Mechanical Properties and Deformation Behavior of Materials Having Ultra Fine Microstructures (Praia do Porto Novo, Portugal, June 29–July 30, 1992).Google Scholar
34.Small, M.K., Daniels, B.J., Clemens, B.M., and Nix, W.D., J. Mater. Res. 9 (1994) p. 25.CrossRefGoogle Scholar
35.Shinn, M. and Barnett, S.A., Appl. Phys. Lett. 64 (1994) p. 61.CrossRefGoogle Scholar
36.Misra, A., Verdier, M., Lu, Y-C., Kung, H., Mitchell, T.E., Nastasi, M.A., and Embury, J.D., Scripta Mater. 39 (1998) p. 555.CrossRefGoogle Scholar
37.Koehler, J.S., Phys. Rev. B 2 (1970) p. 547.CrossRefGoogle Scholar
38.Head, A.K., Philos. Mag. 44 (1953) p. 92.CrossRefGoogle Scholar
39.Yashar, P., Chu, X., Barnett, S.A., Rechner, J., Wang, Y.Y., Wong, M.S., and Sproul, W.D., Appl. Phys. Lett. 72 (1998) p. 9879.CrossRefGoogle Scholar
40.Doerner, M.F., PhD thesis, Stanford University, 1987.Google Scholar
41.Sevillano, J., “Strength of Metals and Alloys,” Proc. ICSMA 5, edited by Haasen, P., Gerold, V., and Kostorz, G. (Pergammon Press, New York, 1979) p. 819.Google Scholar
42.Armstrong, R.W., “The Influence of Polycrystalline Grain Size on Mechanical Properties,” in Advances in Materials Research, vol.4, edited by Herman, H. (Interscience Publishers, New York, 1970) p. 101.Google Scholar
43.Anderson, P.M. and Li, C., Nanostruc. Mater. 5 (1995) p. 349.CrossRefGoogle Scholar
44.Mitchell, T.E., Lu, Y-C., Griffin, A.J. Jr., Nastasi, M.A., and Kung, H., J. Am. Ceram. Soc. 80 (1997) p. 1673.CrossRefGoogle Scholar
45.Nix, W.D., Mater. Sci. Eng. A 234–236 (1997) p. 37.CrossRefGoogle Scholar
46.Chu, X. and Barnett, S.A., J. Appl. Phys. 77 (1995) p. 4403.CrossRefGoogle Scholar
47.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7 (1992) p. 901.CrossRefGoogle Scholar
48.Daniels, B.J., Nix, W.D., and Clemens, B.M., in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T.D., Lairson, B.M., Clemens, B.M., Shin, S-C., and Sato, K. (Mater. Res. Soc. Symp. Proc. 382, Pittsburgh, 1995) p. 315.Google Scholar
49.Daniels, B.J., Nix, W.D., and Clemens, B.M., Thin Solid Films 253 (1994) p. 218.CrossRefGoogle Scholar
50.Verdier, M., Niewczas, M., Embury, J.D., Nastasi, M.A., and Kung, H., in Fundamentals of Nanoindentation and Nanotribology, edited by Baker, S., Burnham, N., Gerberich, W., and Moody, N.. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998).Google Scholar