Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T05:07:12.241Z Has data issue: false hasContentIssue false

The structure and reactivity of surfaces revealed by scanning tunneling microscopy

Published online by Cambridge University Press:  12 July 2012

Flemming Besenbacher
Affiliation:
Department of Physics and Astronomy, University of Aarhus, Denmark; [email protected]
Peter Thostrup
Affiliation:
Department of Physics and Astronomy, University of Aarhus, Denmark; [email protected]
Miquel Salmeron
Affiliation:
Department of Physics and Astronomy, University of Aarhus, Denmark; [email protected]
Get access

Abstract

Scanning tunneling microscopy (STM) has revolutionized the fields of heterogeneous catalysis and environmental sciences by providing unique insights into the atomic-scale structure of model catalysts. For the first time, STM has revealed the structure of active sites, including steps, kinks, and special atomic geometries in compounds. It has provided images of atomic scale dynamic processes, including diffusion and reactions. STM can operate in environments of gases and liquids, as found in real life and in industrial processes. We illustrate these unique capabilities with examples and how the information obtained can lead to industrially relevant information and help the design of new catalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E., Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
2.Wiesendanger, R., Ed., Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, Cambridge, 1994), p. 637.CrossRefGoogle Scholar
3.Bowker, M., Chem. Soc. Rev. 37, 2204 (2008).CrossRefGoogle Scholar
4.Besenbacher, F., Brorson, M., Clausen, B.S., Helveg, S., Hinnemann, B., Kibsgaard, J., Lauritsen, J.V., Moses, P.G., Nørskov, J.K., Topsøe, H., Catal. Today, 130, 86 (2008).CrossRefGoogle Scholar
5.Wieckowski, A., in Fuel Cell Catalysis: A Surface Science Approach, Koper, M., Ed. (Wiley-Interscience, Hoboken, NJ, 2009).Google Scholar
6.Besenbacher, F., Chorkendorff, I., Clausen, B.S., Hammer, B., Molenbroek, A.M., Nørskov, J.K., Stensgaard, I., Science 279, 1913 (1998).CrossRefGoogle Scholar
7.Vang, R.T., Honkala, K., Dahl, S., Vestergaard, E.K., Schnadt, J., Lægsgaard, E., Clausen, B.S., Nørskov, J.K., Besenbacher, F., Nat. Mater. 4, 160 (2005).CrossRefGoogle Scholar
8.Lauritsen, J.V., Nyberg, M., Nørskov, J.K., Clausen, B.S., Topsøe, H., Lægsgaard, E., Besenbacher, F., J. Catal. 224, 94 (2004).CrossRefGoogle Scholar
9.Tuxen, A.K., Kibsgaard, J., Gøbel, H.T., Lægsgaard, E., Topsøe, H., Besenbacher, F., Lauritsen, J.V., ACS Nano 4, 4677 (2010).CrossRefGoogle Scholar
10.Mitsui, T., Rose, M.K., Fomin, E., Frank Ogletree, D., Salmeron, M., Science 297, 1850 (2002).CrossRefGoogle Scholar
11.Ranea, V., Michaelides, A., Ramírez, R., de Andres, P., Vergés, J., King, D., Phys. Rev. Lett. 92, 136104 (2004).CrossRefGoogle Scholar
12.Hwang, R.Q., Zeglinski, D.M., López Vázquez-de-Parga, A., Ogletree, D.F., Salmeron, M., Denley, D.R., Phys. Rev. B 44, 1914 (1991).Google Scholar
13.Dunphy, J.C., Sautet, P., Ogletree, D.F., Dabboussi, O., Salmeron, M.B., Phys. Rev. B 47, 2330 (1993).CrossRefGoogle Scholar
14.Mitsui, T., Rose, M.K., Fomin, E., Ogletree, D.F., Salmeron, M., Phys. Rev. Lett. 94 (03), 6101 (2005).CrossRefGoogle Scholar
15.Wintterlin, J., Völkening, S., Janssens, T.V.W., Zambelli, T., Ertl, G., Science 278, 1931 (1997).Google Scholar
16.Campbell, C.T., Ertl, G., Kuipers, H., Segner, J., J. Chem. Phys. 73, 5862 (1980).CrossRefGoogle Scholar
17.McIntyre, B.J., Salmeron, M., Somorjai, G.A., J. Vac. Sci. Technol., A 11, 1964 (1993).CrossRefGoogle Scholar
18.Österlund, L., Rasmussen, P.B., Thostrup, P., Lægsgaard, E., Stensgaard, I., Besenbacher, F., Phys. Rev. Lett. 86, 460 (2001).CrossRefGoogle Scholar
19.Rasmussen, P.B., Hendriksen, B.L.M., Zeijlemaker, H., Ficke, H.G., Frenken, J.W.M., Rev. Sci. Instrum. 69, 3879 (1998).CrossRefGoogle Scholar
20.Rider, K.B., Hwang, K.S., Salmeron, M., Somorjai, G.A., Phys. Rev. Lett. 86 (19), 4330 (2001).CrossRefGoogle Scholar
21.Rider, K.B., Hwang, K., Salmeron, M., Somorjai, G., J. Am. Chem. Soc. 124, 5588 (2002).CrossRefGoogle Scholar
22.Requejo, F.G., Hebenstreit, E.L.D., Ogletree, D.F., Salmeron, M., J. Catal. 226 (1), 83 (2004).CrossRefGoogle Scholar
23.Thostrup, P., Christoffersen, E., Lorensen, H.T., Jacobsen, K.W., Besenbacher, F., Nørskov, J.K., Phys. Rev. Lett. 87, 126102 (2001).Google Scholar
24.Thostrup, P., Kruse Vestergaard, E., An, T., Lægsgaard, E., Besenbacher, F., J. Chem. Phys. 118, 3724 (2003).CrossRefGoogle Scholar
25.Behm, R.J., Thiel, P.A., Norton, P.R., Ertl, G., J. Chem. Phys. 78, 7437 (1983).CrossRefGoogle Scholar
26.Ritter, E., Behm, R.J., Potschke, G., Wintterlin, J., Surf. Sci. 181, 403 (1987).CrossRefGoogle Scholar
27.Tao, F., Dag, S., Wang, L.-W., Liu, Z., Butcher, D.R., Bluhm, H., Salmeron, M., Somorjai, G.A., Science 327, 850 (2010).CrossRefGoogle Scholar
28.Lægsgaard, E., Österlund, L., Thostrup, P., Rasmussen, P.B., Stensgaard, I., Besenbacher, F., Rev. Sci. Instrum. 72, 3537 (2001).Google Scholar