Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T12:07:15.376Z Has data issue: false hasContentIssue false

Structure and Mechanical Behavior of Bulk Nanocrystalline Materials

Published online by Cambridge University Press:  29 November 2013

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The reduction of grain size to the nanometer range (˜2-100 nm) has led to many interesting materials properties, including those involving mechanical behavior. In the case of metals, the Hall-Petch equation, which relates the yield stress to the inverse square root of the grain size, predicts great increases in strength with grain refinement. On the other hand, theory indicates that the high volume fraction of interfacial regions leads to increased deformation by grain-boundary sliding in metals with grain size in the low end of the nanocrystalline range. Nanocrystalline ceramics also have desirable properties. Chief among these are lower sintering temperatures and enhanced strain to failure. These two properties acting in combination allow for some unique applications, such as low-temperature diffusion bonding (the direct joining of ceramics to each other using moderate temperatures and pressures). Mechanical properties sometimes are affected by the fact that ceramics in a fine-grained form are stable in a different (usually higher pressure) phase than that which is considered “normal” for the ceramic. To the extent that the mechanical properties of a ceramic are dependent on its crystal-lographic structure, these differences will become evident at the smaller size scales.

It is uncertain how deformation takes place in very fine-grained nanocrystalline materials. It has been recognized for some time that the Hall-Petch relationship, which usually is explained on the basis of dislocation pileups at grain boundaries, must break down at grain sizes such that a grain cannot support a pileup. Even some of the basic assumptions of dislocation theory may no longer be appropriate in this size regime. Recently considerable progress has been made in simulating the behavior of extremely fine-grained metals under stress using molecular-dynamics techniques. Molecular-dynamics (MD) simulations of deformation in nanophase Ni and Cu were carried out in the temperature range of 300–500 K, at constant applied uniaxial tensile stresses between 0.05 GPa and 1.5 GPa, on samples with average grain sizes ranging from 3.4 nm to 12 nm.

Type
Mechanical Behavior of Nanostructured Materials
Copyright
Copyright © Materials Research Society 1999

References

1.Hall, E.O., Proc. Phys. Soc. London, Sect. B 64 (1951) p. 747.CrossRefGoogle Scholar
2.Petch, N.J., J. Iron Steel Inst. 174 (1953) p. 25.Google Scholar
3.Coble, R.L., J. Appl. Phys. 34 (1963) p. 1679.CrossRefGoogle Scholar
4.Garvie, R.C, J. Phys. Chem. 69 (1965) p. 1238.CrossRefGoogle Scholar
5.Winterer, W., Nitsche, R., Redfern, S.A.T., Schmahl, W.W., and Halm, H., Nanostruc. Mater. 5 (1995) p. 679.CrossRefGoogle Scholar
6.Yamaguchi, O., Shirai, M., and Yoshinaka, M., J. Am. Ceram. Soc. 71 (1988) p. C510.Google Scholar
7.Lee, H-Y., Riehemann, W., and Mordike, B.L., J. Eur. Ceram. Soc. 10 (1992) p. 245.CrossRefGoogle Scholar
8.Skandan, G., Nanostruc. Mater. 5 (1995) p. 111.CrossRefGoogle Scholar
9.Skandan, G., Foster, C.M., Frase, H., Ali, M.N., Parker, J.C., and Hahn, H., Nanostruc. Mater. 1 (1992) p. 313.CrossRefGoogle Scholar
10.Nieh, T.G. and Wadsworth, J., Scripta Metall. Mater. 25 (1991) p. 955.CrossRefGoogle Scholar
11.Scattergood, R.O. and Koch, C.C., Scripta Metall. Mater. 27 (1992)p. 1195.CrossRefGoogle Scholar
12.Swygenhoven, H. Van, Spaczer, M., and Caro, A., Nanostruc. Mater. 10 (1998) p. 819.CrossRefGoogle Scholar
13.Swygenhoven, H. Van, Spaczer, M., and Caro, A., in Microscopic Simulation of Interfacial Phenomena in Solids and Liquids, edited by Phillpot, S.R., Bristowe, P.D., Stroud, D.G., and Smith, J.R. (Mater. Res. Soc. Symp. Proc. 492, Warrendale, PA, 1998) p. 29.Google Scholar
14.Swygenhoven, H. Van, Spaczer, M., Farkas, D., and Caro, A., Nanostruc. Mater. in press.Google Scholar
15.Swygenhoven, H. Van and Caro, A., Appl. Phys. Lett. 71 (1997) p. 12.Google Scholar
16.Swygenhoven, H. Van and Caro, A., (unpublished manuscript).Google Scholar
17.Schiøtz, J., DiTolla, F.D., and Jacobsen, K.W., Nature 391 (1998) p. 561.CrossRefGoogle Scholar
18.Schiøtz, J., Vegge, T., DiTolla, F.D., and Jacobsen, K.W., in Modelling of Structure and Mechanics of Materials from Microscale to Product, edited by Carstensen, J.V., Letters, T., Lorentzen, T., Pedersen, O.B., Sørensen, B.F., and Winther, G. (RISØ National Laboratory, Roskilde, Denmark, 1998) p. 133.Google Scholar
19.Cleri, F. and Rosato, V., Phys. Rev. B 48 (1993) p. 48.CrossRefGoogle Scholar
20.Parrinello, M. and Rahman, A., J. Appl. Phys. 52 (1981) p. 12.CrossRefGoogle Scholar
21.Sanders, P.G., Rittner, M., Kiedaisch, E., Weertman, J.R., Kung, H., and Lu, Y-C., Nanostruc. Mater. 9 (1997) p. 433.CrossRefGoogle Scholar
22.Mishin, O.V., Gertsman, V.J., Valiev, R.Z., and Gottstein, G., Scripta Mater. 35 (1996) p. 873.CrossRefGoogle Scholar
23.Voronoi, G.Z., Reine Angew. Math. 134 (1908) p. 199.Google Scholar
24.Honeycutt, D.J. and Anderson, H.C., J. Phys. Chem. 91 (1987) p. 4950.CrossRefGoogle Scholar
25.Swygenhoven, H. Van, Spaczer, M., and Caro, A. (unpublished manuscript).Google Scholar
26.Gleiter, H., Prog. Mater. Sci. 32 (1989) p. 223.CrossRefGoogle Scholar
27.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 46 (1998) p. 4195.CrossRefGoogle Scholar
28.Agnew, S.R., Elliott, B.R., Youngdahl, C.J., Hemker, K.J., and Weertman, J.R., in Modelling of Structure and Mechanics of Materials from Microscale to Product, edited by Carstensen, J.V., Letters, T., Lorentzen, T., Pedersen, O.B., Sørensen, B.F., and Winther, G. (RISØ National Laboratory, Roskilde, Denmark, 1998) p. 1.Google Scholar
29.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45 (1997) p. 4019.CrossRefGoogle Scholar
30.Sanders, P.G., Youngdahl, C.J., and Weertman, J.R., Mater. Sci. Eng. A 234-236 (1997) p. 77.CrossRefGoogle Scholar
31.Warren, B.E., X-ray Diffraction (Dover, New York, 1990).Google Scholar
32.Siegel, R.W., Ramasamy, S., Hahn, H., Zonghuan, Z., and Ting, L., J. Mater. Res. 3 (1988) p. 1367.CrossRefGoogle Scholar
33.Hahn, H., Logas, J., and Averback, R.S., J. Mater. Res. 5 (1990) p. 609.CrossRefGoogle Scholar
34.Pechenik, A., Piermarini, G.J., and Danforth, S.C., J. Am. Ceram. Soc. 75 (1992) p. 3283.CrossRefGoogle Scholar
35.Andrievski, R.A., Int. J. Powder Metall. 30 (1994) p. 59.Google Scholar
36.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D., J. Mater. Res. 5 (1990) p. 1073.CrossRefGoogle Scholar
37.Mayo, M.J., Siegel, R.W., Liao, Y.X., and Nix, W.D., J. Mater. Res. 7 (1992) p. 973.CrossRefGoogle Scholar
38.Höfler, H.J., Hahn, H., and Averback, R.S., Defect Diff. Forum 75 (1991) p. 195.CrossRefGoogle Scholar
39.Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. de Phys. C5 (1988) p. 769.Google Scholar
40.Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6 (1991) p. 1012.CrossRefGoogle Scholar
41.Shen, T.D., Koch, C.C., Tsui, T.Y., and Pharr, G.M., J. Mater. Res. 10 (1995) p. 2892.CrossRefGoogle Scholar
42.Sharpe, W.N. Jr. and Fowler, R.O., ASTM STP 1204 (American Society for Testing and Materials, Philidelphia, 1993) p. 386.Google Scholar
43.Yan, M.F. and Rhodes, W.W., Mater. Sci. Eng. 61 (1983) p. 59.CrossRefGoogle Scholar
44.Hague, D.C., M.S. thesis, The Pennsylvania State University, 1992.Google Scholar
45.Barringer, E.A., Brook, R., and Bowen, H.K., in Sintering and Heterogeneous Catalysis, edited by Kuczynski, G.C., Miller, A.E., and Sargent, G.A. (Plenum Press, New York, 1984) p. 1.Google Scholar
46.Nieh, T.G., CMcNally, M., and Wadsworth, J., J. Met. (1989) p. 31.Google Scholar
47.Maehara, Y. and Langdon, T.G., J. Mater. Sci. 25 (1990) p. 2275.CrossRefGoogle Scholar
48.Nieh, T.G., Wadsworth, J.,and Wakai, F., Int. Mater. Rev. 36 (1991) p. 146.CrossRefGoogle Scholar
49.Mayo, M.J., Nanostruc. Mater. 9 (1997) p. 717.CrossRefGoogle Scholar
50.Çiftçioglu, M. and Mayo, M.J., in Superplasticity in Metals, Ceramics, and Intermetallics edited by Mayo, M.J., Kobayashi, M., and Wadsworth, J. (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, 1990) p. 77.Google Scholar
51.Hahn, H. and Averback, R.S., J. Am. Ceram. Soc. 74 (1991) p. 2918.CrossRefGoogle Scholar
52.Carry, C. and Mocellin, A., Ceram. Int. 13 (1987) p. 89.CrossRefGoogle Scholar
53.Prabhu, G.B. and Bourell, D.L., Scripta Metall. Mater. 33 (1995) p. 761.CrossRefGoogle Scholar
54.Mayo, M.J., in Superplasticity in Advanced Materials, edited by Hori, S., Tokizane, M., and Furushiro, N. (Japan Society for Research on Superplasticity, Osaka, 1991) p. 541.Google Scholar
55.Cross, T.H. and Mayo, M.J., Nanostruc. Mater. 3 (1994) p. 163.CrossRefGoogle Scholar
56.Ferkel, H. and Riehemann, W., Nanostruc. Mater. 7 (1996) p. 835.CrossRefGoogle Scholar