No CrossRef data available.
Published online by Cambridge University Press: 03 April 2017
Designing structural materials for tailored response at extreme conditions is a grand challenge in materials research. Such materials can be made using either “top-down” or “bottom-up” processes to create nanostructured metals and composites that contain atomically designed interfaces that not only block dislocation slip but also attract, absorb, and annihilate point and line defects. Such multifunctional material systems are not just high in strength but also tolerant of damage at extremes of irradiation, temperature, and mechanical stresses, and hence have applications as structural materials in nuclear power and other energy, transportation, and defense technologies. The exploration of these exceptional properties at extremes requires novel and unconventional methodologies, such as in situ experiments with high spatial and temporal resolution, complemented by simulation across multiple length and time scales.