Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T21:24:01.951Z Has data issue: false hasContentIssue false

Strain-Induced Modulations in the Surface Morphology of Heteroepitaxial Layers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The growth of semiconductor heteroepitaxial layers is assuming ever greater importance due to the demands of modern electronic-device fabrication. Furthermore although low-strain heterosystems such as AlGaAs/GaAs remain the basis of many device structures, there is an increasing trend also to use more highly strained combinations such as InGaAs/GaAs and SiGe/Si. However the growth of the latter epitaxial systems must be approached with great care in order to achieve the optimum layer structural quality. Of course for any given alloy-layer composition, interfacial misfit defects in general will be introduced when the layer thickness exceeds a critical value, as originally described by Frank and van der Merwe, and Jesser and Matthews. (See the article by F.K. LeGoues in this issue for more general considerations of misfit-defect introduction.) In addition the morphology of such strained layers must be given very careful attention. It is the purpose of this article to examine our current understanding in this latter area.

When any epitaxial layer is grown, initially it might be expected that a flat surface would result under ideal growth conditions when internal defects have been eliminated. This would be expected to minimize the surface step density and hence the surface energy. However nature has a way of confounding our simplest expectations and while for homoepitaxial layers in the absence of kinetic effects this expectation virtually can be realized, the presence of strain in a heteroepitaxial system can severely affect the observed layer morphology.

Type
Heteroepitaxy and Strain
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Frank, F.C. and van der Merwe, J.H., Proc. Roy. Soc. A 200 (1949) p. 125.Google Scholar
2.Jesser, W.A. and Matthews, J.W., Phil. Mag. 15 (1967) p. 1097.CrossRefGoogle Scholar
3.Asaro, R.J. and Tiller, W.A., Metall. Trans. 3 (1972) p. 1789.CrossRefGoogle Scholar
4.Grinfeld, M.A., Sov. Phys. Dokl. 31 (1986) p. 831.Google Scholar
5.Srolovitz, D.J., Acta Metall. 37 (1989) p. 621.CrossRefGoogle Scholar
6.Gao, H., Int. J. Solids Struct. 28 (1991) p. 703.CrossRefGoogle Scholar
7.Nozieres, P., in Solids Far from Equilibrium, edited by Godreche, C. (Cambridge University Press, New York, 1992).Google Scholar
8.Yang, W.H. and Srolovitz, D.J., Phys. Rev. Lett. 71 (1993) p. 1593.CrossRefGoogle Scholar
9.Grilhé, J., Acta Metall. Mater. 41 (1993) p. 909.CrossRefGoogle Scholar
10.Grinfeld, M.A., in Thermodynamic Methods in the Theory of Heterogeneous Systems (Longman, New York, 1991).Google Scholar
11.Spencer, B.J., Voorhees, P.W., and Davies, S.H., Phys. Rev. Lett. 67 (1991) p. 3696.CrossRefGoogle Scholar
12.Grinfeld, M.A., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, 1992) p. 183.Google Scholar
13.Spencer, B.J., Voorhees, P.W., and Davis, S.H., J. Appl. Phys. 73 (1993) p. 4955.CrossRefGoogle Scholar
14.Pidduck, A.J., Robbins, D.J., and Cullis, A.G., in Microscopy of Semiconducting Materials 1993, edited by Cullis, A.G., Hutchison, J.L., and Staton-Bevan, A.E. (IOP Publishing, Bristol, 1993) p. 609.Google Scholar
15.Chiu, C-H. and Gao, H., Int. J. Solids Struct. 30 (1993) p. 2983.Google Scholar
16.Spencer, B.J. and Meiron, D.I., Acta Metall. Mater. 42 (1994) p. 3629.CrossRefGoogle Scholar
17.Gao, H., J. Mech. Phys. Solids 42 (1994) p. 741.CrossRefGoogle Scholar
18.Christiansen, S., Albrecht, M., Strunk, H.P., Hansson, P.O., and Bauser, E., Appl. Phys. Lett. 66 (1995) p. 574.CrossRefGoogle Scholar
19.Cullis, A.G., Robbins, D.J., Pidduck, A.J., and Smith, P.W., in Microscopy of Semiconducting Materials 1991, edited by Cullis, A.G. and Long, N.J. (IOP Publishing, Bristol, 1991) p. 439.Google Scholar
20.Cullis, A.G., Robbins, D.J., Pidduck, A.J., and Smith, P.W., J. Cryst. Growth 123 (1992) p. 333.CrossRefGoogle Scholar
21.Pidduck, A.J., Robbins, D.J., Cullis, A.G., Leong, W.Y., and Pitt, A.M., Thin Solid Films 222 (1992) p. 78.CrossRefGoogle Scholar
22.Dutartre, D., Warren, P., Chollet, F., Gisbert, F., Berenguer, M., and Berbezier, I., J. Cryst. Growth 142 (1994) p. 78.CrossRefGoogle Scholar
23.Cullis, A.G., Robbins, D.J., Barnett, S.J., and Pidduck, A.J., J. Vac. Sci. Technol. A 12 (1994) p. 1924.CrossRefGoogle Scholar
24.Mo, Y-W., Savage, D.E., B.Swartzentruber, S., and Lagally, M.G., J. Vac. Sci. Technol. 65 (1990) p. 1020.Google Scholar
25.Jesson, D.E., Pennycook, S.J.. Baribeau, J-M., and Houghton, D.C., J. Vac. Sci. Technol. 71 (1993) p. 1744.Google Scholar
26.Berger, P.R., Chang, K., Bhattacharya, P., Singh, J., and Bajaj, K.K., Appl. Phys. Lett. 53 (1988) p. 684.CrossRefGoogle Scholar
27.Whaley, G.J. and Cohen, P.I., Appl. Phys. Lett. 57 (1990) p. 144.CrossRefGoogle Scholar
28.Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57 (1990) p. 2110.CrossRefGoogle Scholar
29.Snyder, C.W., Orr, B.G., Kessler, D., and Sander, L.M., Phys. Rev. Lett. 66 (1991) p. 3032.CrossRefGoogle Scholar
30.Cullis, A.G., Pidduck, A.J., and Emeny, M.T., in Microscopy of Semiconducting Materials 1995, edited by Cullis, A.G. and Staton-Bevan, A.E. (IOP Publishing, Bristol, 1995) p. 163.Google Scholar
31.Cullis, A.G., Pidduck, A.J., and Emeny, M.T., J. Cryst. Growth 158 (1996) p. 15.CrossRefGoogle Scholar
32.Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64 (1990) p. 690.CrossRefGoogle Scholar
33.Walther, T., Humphreys, C.J., Cullis, A.G., and Robbins, D.J., Mater. Sci. Forum 196–201 (1995) p. 505.CrossRefGoogle Scholar
34.Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N.P., Phys. Rev. Lett. 75 (1995) p. 2542.CrossRefGoogle Scholar
35.Ponchet, A., Rocher, A., Ougazzaden, A., and Mircea, A., J. Appl. Phys. 75 (1994) p. 7881.CrossRefGoogle Scholar
36.Guyer, J.E. and Voorhees, P.W., Phys. Rev. Lett. 74 (1995) p. 4031.CrossRefGoogle Scholar
37.Xie, Y.H., Gilmer, G.H., Roland, C., Silverman, P.J., Buratto, S.K., Cheng, J.Y., Fitzgerald, E.A., Kortan, A.R, Schuppler, S., Marcus, M.A., and Citrin, P.H., Phys. Rev. Lett. 73 (1994) p. 3006.CrossRefGoogle Scholar
38.Cullis, A.G., Pidduck, A.J., Martin, T., and Johnson, A.D., Appl. Phys. Lett. (in press).Google Scholar
39.Freund, L.B., Bower, A., and Ramirez, J.C., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, 1989) p. 139.Google Scholar
40.Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72 (1994) p. 3570.CrossRefGoogle Scholar
41.Cullis, A.G., Pidduck, A.J., and Emeny, M.T., Phys. Rev. Lett. 75 (1995) p. 2368.CrossRefGoogle Scholar
42.Androussi, Y., Lefebvre, A., Delamarre, C., Wang, L.P., Dubon, A., Courboules, B., Departs, C., and Massies, J., Appl. Phys. Lett. 66 (1995) p. 3450.CrossRefGoogle Scholar
43.Rice, J.R. and Beltz, G.E., J. Mech. Phys. Solids 42 (1994) p. 333.CrossRefGoogle Scholar
44.Albrecht, M., Christiansen, S., Michler, J., Dorsch, W., Strunk, H.P., Hansson, P.O., and Bauser, E., Appl. Phys. Lett. 67 (1995) p. 1232.CrossRefGoogle Scholar
45.Jesson, D.E., Chen, K.M., Pennycook, S.J., Thundat, T., and Warmack, R.J., Science 268 (1995) p. 1161.CrossRefGoogle Scholar