Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T13:57:59.111Z Has data issue: false hasContentIssue false

Stability of Nanometer-Thick Layers in Hard Coatings

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article reviews two topics related to the stability of hard coatings composed of nanometer-thick layers: epitaxial stabilization and high-temperature stability. Early work on nanolayered hard coatings demonstrated large hardness increases as compared with monolithic coatings, but it was subsequently found that the layers interdiffused at elevated temperatures. More recently, it has been shown that nanolayers exhibit good stability at elevated temperatures if the layer materials are thermodynamically stable with respect to each other and are able to form low-energy coherent interfaces. This article discusses metal/nitride, nitride/nitride, and nitride/boride nanolayers that exhibit good high-temperature stability and hardness values that are maintained (or even increase) after high-temperature annealing. Epitaxial stabilization of nonequilibrium structuresin thin layers is a well-known phenomenon that has been applied to hard nitride materials. In particular, AlN, which crystallizes in the hexagonal wurtzite structure in bulk form, was stabilized in the rock-salt cubic structure in nitride/nitride nanolayers (e.g., AlN/TiN). These results and the current understanding of epitaxial stabilization in hard nanolayers are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barnett, S.A., in Physics of Thin Films, edited by Francombe, M. and Vossen, J.A. (Academic Press, New York, 1993) p. 1.Google Scholar
2.Barnett, S.A. and Shinn, M., Annu. Rev. Mater. Sci. 24 (1994) p. 481.CrossRefGoogle Scholar
3.Bollier, R.D., “An Overview of the Market for Wear-Resistant Coatings Today and into the Next Century,” presented at the Wear and Super-hard Coatings Conf., Tampa, Fla., 1998.Google Scholar
4.Yashar, P., PhD thesis, Northwestern University, 1998.Google Scholar
5.Mirkarimi, P.B., Shinn, M., and Barnett, S.A., J. Vac. Sci. Technol., A 10 (1992) p. 681.CrossRefGoogle Scholar
6.Inspektor, A., Battaglia, F., Oles, E., Bauer, E., Gates, A., and Schleinkofer, U., “Advances and Technology Issues in Superhard Coatings for Cutting Tools,” presented at the Wear and Superhard Coatings Conf., Tampa, Fla., 1998.Google Scholar
7.Engström, C., Hultman, L., Madan, A., Barnett, S.A., Nastasi, M., and Lavoie, C., “Mechanical and Thermal Stability of TiN/NbN Superlattice Thin Films” (unpublished manuscript).Google Scholar
8.Martin, K., PhD thesis, Northwestern University, 2001.Google Scholar
9.Martin, K., Madan, A., Kim, I.W., and Barnett, S.A., “Effect of Annealing on the Mechanical Properties and Microstructure of ZrN/ZrB2 Films” (unpublished manuscript).Google Scholar
10.Madan, A., Wang, Y.-Y., Barnett, S.A., Engström, C., Ljungcrantz, H., Hultman, L., and Grimsditch, M., J. Appl. Phys. 84 (2) (1998) p. 776.CrossRefGoogle Scholar
11.Engström, C., Madan, A., Birch, J., Nastasi, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 15 (2000) p. 554.CrossRefGoogle Scholar
12.Madan, A., Barnett, S.A., Misra, A., Kung, H., and Nastasi, M., J. Vac. Sci. Technol., A 19 (3) (2001) p. 952.CrossRefGoogle Scholar
13.Madan, A., Ji, J., and Barnett, S.A., “High-Temperature Stability of Polycrystalline W/ZrN Nanolayered Thin Films” (unpublished manuscript).Google Scholar
14.Madan, A., Kim, I.W., Cheng, S.C., Yashar, P., Dravid, V.P., and Barnett, S.A., Phys. Rev. Lett. 78 (9) (1997) p. 1743.CrossRefGoogle Scholar
15.Kim, I.W., Li, Q., Marks, L.D., and Barnett, S.A., Appl. Phys. Lett. 78 (2001) p. 892;CrossRefGoogle Scholar
Li, Q., Kim, I.W., Barnett, S.A., and Marks, L.D., J. Mater. Res. 17 (2002) p. 1224.CrossRefGoogle Scholar
16.Madan, A., PhD thesis, Northwestern University, 1997.Google Scholar
17.Kim, I.W., Madan, A., Guruz, M.W., Dravid, V.P., and Barnett, S.A., J. Vac. Sci. Technol., A 19 (2001) p. 2069.CrossRefGoogle Scholar
18.Setoyama, M., Nakayama, A., Tanaka, M., Kitagawa, N., and Nomura, T., Surf. Coat. Technol. 86–87 (1996) p. 225.CrossRefGoogle Scholar
19.Kim, I.W., Li, Q., Marks, L.D., Guruz, M.M., Dravid, V.P., Barnett, S.A., Misra, A., Kung, H., and Nastasi, M.A., “Structure and Mechanical Properties of Epitaxial AlN/TiN Superlattices” (unpublished manuscript).Google Scholar
20.Madan, A., Chu, X., and Barnett, S.A., Appl. Phys. Lett. 68 (16) (1996) p. 2198.CrossRefGoogle Scholar
21.Madan, A., Yashar, P., Barnett, S.A., and Shinn, M., Thin Solid Films 302 (1997) p. 147.CrossRefGoogle Scholar
22.Josell, D. and Spaepen, F., Acta Metall. Mater. 41 (1993) p. 3007.CrossRefGoogle Scholar
23.Bruinsma, R. and Zangwill, A., J. Phys. 47 (1986) p. 2055.CrossRefGoogle Scholar
24.Wood, D.M. and Zunger, A., Phys. Rev. B 40 (1989) p. 4062.CrossRefGoogle Scholar
25.Hall, M.J., Hickey, B.J., Howson, M.A., Walker, M.J., Xu, J., Greig, D., and Wiser, N., Phys. Rev. B 47 (19) (1993) p. 12785.CrossRefGoogle Scholar
26.Lamelas, F.J., Lee, C.H., He, H., Vavra, W., and Clarke, R., Phys. Rev. B 40 (8) (1989) p. 5837.CrossRefGoogle Scholar
27.Li, D., Lin, X.-W., Cheng, S.-C., Dravid, V.P., Chung, Y.-W., Wong, M.-S., and Sproul, W.D., Appl. Phys. Lett. 68 (9) (1996) p. 1211.CrossRefGoogle Scholar
28.Wu, M.L., Guruz, M.U., Dravid, V.P., Chung, Y.W., Anders, S., Freire, F.L. Jr, and Mariotto, G., Appl. Phys. Lett. 76 (19) (2000) p. 2692.CrossRefGoogle Scholar
29.Yashar, P., Chu, X., Barnett, S.A., Rechner, J., Wang, Y.Y., Wong, M.-S., and Sproul, W.D., Appl. Phys. Lett. 72 (8) (1998) p. 987.CrossRefGoogle Scholar
30.Christensen, N.E. and Gorczyca, I., Phys. Rev. B 50 (1994) p. 4397.CrossRefGoogle Scholar