Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T08:38:20.907Z Has data issue: false hasContentIssue false

Sputter Synthesis of Ferroelectric Films and Heterostructures

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Ferroelectric films can display a wide range of dielectric, ferroelectric, piezoelectric, electrostrictive, and pyroelectric properties. The potential utilization of these properties in a new generation of devices has driven the intensive studies on the synthesis, characterization, and determination of processing-microstructure-property relationships of ferroelectric thin films during the last five years. In addition there has been an increased drive for integrating ferroelectric film-based heterostructures with different substrate materials to demonstrate numerous devices that exploit the dielectric, ferroelectric, piezoelectric, electrostrictive, and pyroelectric properties of these materials. For example the high dielectric permittivities of perovskite-type materials can be advantageously used in dynamic random-access memories (DRAMs), while the large values of switchable remanent polarization of ferroelectric materials are suitable for nonvolatile ferroelectric random-access memories (NVFRAMs).

Various vapor-phase deposition techniques such as plasma and ion-beam sputter deposition (PSD and IBSD, respectively), pulsed laser-ablation deposition (PLAD), electron-beam or oven-induced evaporation for molecular-beam epitaxy (MBE), and chemical vapor deposition (CVD) have been applied to produce ferroelectric films and layered heterostructures. See References 4–7 for recent reviews. However, work is still necessary to optimize the techniques to produce device-quality films on large semiconductor substrates in a way that is fully compatible with existing semiconductor process technology. Therefore research efforts should be focused on the optimization of suitable process methods and on the investigation of processing-composition-microstructure property relationships. These efforts are the focus of this article with emphasis on PSD and IBSD techniques.

Type
Electroceramic Thin Films Part I: Processing
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Proc. 3rd–5th Int. Symp. Integrated Ferroelectrics, edited by de Araujo, C.A. Paz (University of Colorado Press, Colorado Springs, 1993); Proc. 6th ISIF, edited by R. Zuleeg, Integrated Ferroelectrics 6–8 (1995).Google Scholar
2.Ferroelectric Thin Films I, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, 1990); Ferroelectric Thin Films II, edited by A.I. Kingon, E.R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, 1991).Google Scholar
3.Science and Technology of Electroceramic Thin Films, edited by Auciello, O. and Waser, R., NATO/ASI Book Series E, vol. 284 (Kluwer Academic Publishers, The Netherlands, 1995).CrossRefGoogle Scholar
4.Hubler, G.K., MRS Bulletin XVII (1992).Google Scholar
5.Auciello, O., Krauss, A.R., and Gifford, K.D., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by de Araujo, C.A. Paz, Scott, J.F., and Taylor, G.W. (Gordon and Breach, Reading, Berkshire, UK, 1996).Google Scholar
6.Auciello, O., Dat, R., and Ramesh, R., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by de Araujo, C.A. Paz, Scott, J.F., and Taylor, G.W. (Gordon and Breach, Reading, Berkshire, UK, 1996).Google Scholar
7.de Keijser, M. and Dormans, D., MRS Bulletin 21 (6) (1996).CrossRefGoogle Scholar
8.Dharmadhikari, V.S. and Grannemann, W.W., J. Appl. Phys. 53 (1982) p. 8988.CrossRefGoogle Scholar
9.Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60 (1986) p. 361.CrossRefGoogle Scholar
10.Sreenivas, K., Sayer, M., and Garrett, P., Thin Solid Films 172 (1989) p. 251.CrossRefGoogle Scholar
11.Ishida, M., Tsuji, S., Hamawaka, Y., and Nakagawa, T., J. Appl. Phys. 21 (1978) p. 339.Google Scholar
12.Adachi, H., Mitsuyu, T., Yamazaki, O., and Wasa, K., J. Appl. Phys. 60 (1986) p. 736.CrossRefGoogle Scholar
13.Rossnagel, S.M. and Cuomo, J.J., in American Institute of Physics Conf. Proc., vol. 165, edited by Harper, J.M.E., Colton, R.J., and Feldman, L.C. (American Physical Society, New York, 1988) p. 106.Google Scholar
14.Roy, R.A., Etzold, K.F., and Cuomo, J.J., in Ferroelectric Thin Films I, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, 1990) p. 77.Google Scholar
15. Ramtron Corp. (USA) has produced PZT-based nonvolatile ferroelectric memories on a small scale using PSD.Google Scholar
16.Krauss, A.R. and Auciello, O., in Materials Modification by Energetic Atoms and Ions, edited by Grabowski, K.S., Barnett, S.A., Rossnagel, S.M., and Wasa, K. (Mater. Res. Soc. Symp. Proc. 268, Pittsburgh, 1992) p. 107.Google Scholar
17.Krupanidhi, S.B., Hu, H., and Kumar, V., J. Appl. Phys. 71 (1992) p. 376; S.B Krupanidhi, in Science and Technology of Electroceramic Thin Films, edited by O. Auciello and R. Waser, NATO/ASI Book Series E, vol. 284 (Kluwer Academic Publishers, The Netherlands, 1995) p. 23.CrossRefGoogle Scholar
18.Kanno, I., Hayasi, S., Kamada, T., Kitagawa, M., and Hirao, T., Jpn. J. Appl. Phys. 32 (1993) p. 4057.CrossRefGoogle Scholar
19.Cuomo, J.J. and Rossnagel, S.M., eds., Handbook of Ion Beam Processing Technology (Noyes Publications, Park Ridge, New Jersey, 1989).Google Scholar
20.Krauss, A.R. and Auciello, O., U.S. Patent No. 4,923,585 (1990).Google Scholar
21.Auciello, O., Krauss, A.R., and Gifford, K.D., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by de Araujo, C.A. Paz, Scott, J.F., and Taylor, G.W. (Gordon and Breach, Reading, Berkshire, UK, 1996).Google Scholar
22.Lichtenwalner, D.J., Auciello, O., Woolcott, R.R., Soble, C.N., Rou, S.H., and Kingon, A.I., J. Vac. Sci. Technol. A10 (1992) p. 1537.CrossRefGoogle Scholar
23.Lichtenwalner, D.J., Woolcott, R.R., Soble, C.N., Auciello, O., and Kingon, A.I., J. Appl. Phys. 70 (1991) p. 6952.CrossRefGoogle Scholar
24.Graettinger, T.M., Lichtenwalner, D.J., Chow, A.F., Auciello, O., and Kingon, A.I., Integrated Ferroelectrics 6 (1995) p. 363.CrossRefGoogle Scholar
25.Chow, A.F., Lichtenwalner, D.J., Auciello, O., Kingon, A.I., Busch, J.R., and Wood, V.E., J. Appl. Phys. 78 (1995) p. 435.CrossRefGoogle Scholar
26.Al-Shareef, H.N., Gifford, K.D., Hren, P.D., Rou, S.H., Auciello, O., and Kingon, A.I., Integrated Ferroelectrics 3 (1993) p. 225.CrossRefGoogle Scholar
27.Belsick, J.R. and Krupanidhi, S.B., J. Appl. Phys. 74 (1993) p. 6851.CrossRefGoogle Scholar
28.Harper, J.M.E., Cuomo, J.J., and Hentzell, H.T.G., J. Appl. Phys. 58 (1985) p. 550.CrossRefGoogle Scholar