Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T14:21:51.254Z Has data issue: false hasContentIssue false

Solute-Atom Segregation at Internal Interfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In an alloy, the equilibrium composition in the vicinity of an inhomogeneity, such as a surface or a grain boundary, will generally differ from the composition in the bulk. This was first recognized by Gibbs. This change in local composition can potentially affect the structure and mechanical properties of the boundary. As an example, experiments by Sass and co-workers have shown that the Burgers vector of the dislocations present in Fe-Au twist boundaries depends on the Au concentration at the boundary. This demonstrates that the structure does, in fact, depend on the local composition of the alloy at the interface.

This article presents computer simulation studies of equilibrium segregation in binary alloys at grain boundaries, and two experimental studies of interfaces using atom-probe field-ion-microscopy (APFIM). These studies address two fundamental questions: What is the composition of the boundary region as a function of the bulk composition and temperature? What is the spatial distribution of the two species in the boundary? Note, that the comparison of experiment and calculations, where possible, is crucial. Such comparisons can provide guidance in the experimental analysis, and the comparison also provides a stringent test of the reliability of the simulation methods.

This article first describes simulation and atom-probe field-ion microscope techniques and next discusses the segregation in Ni-Cu alloys to isolated edge dislocations. This is followed by a study of segregation at twist boundaries in Pt-Au alloys. Then, the segregation at an asymmetric mixed tilt-twist boundary in a Pt-Ni alloy is computed, and the results are compared with experimental atom-probe held-ion-microscopy results. Finally, the results of an atom-probe study of two-dimensional Re segregation at a twist boundary with a small tilt component in a W-Re alloy are presented.

Type
Interfaces Part I
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gibbs, J.W., The Collected Works of J. Willard Cibbs (Yale University Press, New Haven, 1948).Google Scholar
2.Sickafus, K.E. and Sass, S.L., Acta Metall. 35 (1987) p. 69; J.R. Michael, C.-H. Lin and S.L. Sass, Scr. Metall. 22 (1988) p. 1121.CrossRefGoogle Scholar
3.Daw, M.S. and Baskes, M.I., Phys. Rev. B 29 (1984) p. 6443; and S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33 (1986) p. 7983.CrossRefGoogle Scholar
4.Baskes, M.I., Daw, M.S., Foiles, S.M., and Dodson, B., MRS Bulletin 13 (1988) p. 28.CrossRefGoogle Scholar
5.Foiles, S.M., Phys. Rev. B 32 (1985) p. 7685.CrossRefGoogle Scholar
6.Foiles, S.M., in Surface Segregation and Related Phenomena, edited by Dowben, P.A. and Miller, A. (CRC, in press).Google Scholar
7.Hall, T.M., Wagner, A., and Seidman, D.N., J. Phys. E: Sci. Instrum. 10 (1977) p. 884.CrossRefGoogle Scholar
8.Hu, J.G., Kuo, S.-M., Seki, A., Krakauer, B.W., and Seidman, D.N., Scripta Metall. 23 (1989) p. 2033; D.N. Seidman, J.G. Hu, S.-M. Kuo, B.W. Krakauer, Y. Oh, and A. Seki, J. Phys. (Paris) 51 (1990) p. Cl-47.CrossRefGoogle Scholar
9.Herschitz, R. and Seidman, D.N., Acta Metall. 33 (1985) p. 1547 & 1565.CrossRefGoogle Scholar
10.Foiles, S.M., in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by Broughton, J., Krakow, W. and Pantelides, S.T. (Mater. Res. Soc. Symp. Proc. 63, Pittsburgh, 1986), p. 61.Google Scholar
11.Hirth, J.P. and Lothe, J., Theory of Dislocations, second edition (John Wiley and Sons, New York, 1982).Google Scholar
12.Read, W.T. Jr. and Shockley, W., Phys. Rev. 78 (1950) p. 275; W.R. Read Jr., Dislocations in Crystals (McGraw-Hill, New York, 1953).CrossRefGoogle Scholar
13.Schober, T.R. and Balluffi, R.W., Philos. Mag. 21 (1970) p. 109; R.W. Balluffi, T.R. Schober, and Y. Komem, Surf. Sci. 31 (1972) p. 68; I. Majid, P.D. Bristowe, and R.W. Balluffi, Phys. Rev. 40 (1989) p. 2779.CrossRefGoogle Scholar
14.Gaudig, W. and Sass, S.L., Philos. Mag. A 39 (1979) p. 725; M.R. Fitzsimmons, K. Burkel, and S.L. Sass, Phys. Rev. Lett. 61 (1988) p. 2237.CrossRefGoogle Scholar
15.Wolf, D., Acta Metall. 37 (1989) p. 1983.CrossRefGoogle Scholar
16.Foiles, S.M., Acta Metall. 37 (1989) p. 2815.CrossRefGoogle Scholar
17.Sass, S.L., Tan, T.Y., and Balluffi, R.W., Philos. Mag. 31 (1975) p. 559; W. Gaudig, D.Y. Guan, and S.L. Sass, Philos. Mag. 34 (1976) p. 923.CrossRefGoogle Scholar
18.Sutton, A.P. and Vitek, V., Philos. Trans. Roy. Soc. Lond. A309 (1983) p. 1; P.D. Bristowe and R.W. Balluffi, J. Phys. (Paris) 46 (1985) p. C4; A.P. Sutton, J. Phys. (Paris) 51 (1990) p. C1.Google Scholar
19.Seki, A., Seidman, D.N., Oh, Y., and Foiles, S.M., (in preparation).Google Scholar
20.Wolf, D., Scr. Metall. 23 (1989) p. 1713.CrossRefGoogle Scholar
21.Gauthier, Y., Joly, R., Baudoing, R., and Rundgren, J., Phys. Rev. B 31 (1985) p. 6216; G. Treglia and B. Legrand, Phys. Rev. B 35 (1987) p. 7876; M. Lundberg, Phys. Rev. B 36 (1987) p. 4692.CrossRefGoogle Scholar
22.Ahmad, M. and Tsong, T.T., J. Chem. Phys. 83 (1985) p. 388; T.T. Tsong, D.M. Ren, and M. Ahmad, Phys. Rev. B 38 (1988) p. 7428.CrossRefGoogle Scholar
23.Kelires, P.C. and Tersoff, J., Phys. Rev. Lett. 63 (1989) p. 1164.CrossRefGoogle Scholar
24.Kuo, S.-M., Seki, A., Oh, Y., and Seidman, D.N., Phys. Rev. Lett. 65 (1990) p. 199.CrossRefGoogle Scholar
25.Ku, J.G. and Seidman, D.N., to be published (1990).Google Scholar