Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:57:56.275Z Has data issue: false hasContentIssue false

Solar Energy Conversion Toward 1 Terawatt

Published online by Cambridge University Press:  31 January 2011

David Ginley
Affiliation:
National Renewable Energy Laboratory, USA
Martin A. Green
Affiliation:
University of New South Wales, Australia
Reuben Collins
Affiliation:
Colorado School of Mines, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The direct conversion of solar energy to electricity by photovoltaic cells or thermal energy in concentrated solar power systems is emerging as a leading contender for next-generation green power production. The photovoltaics (PV) area is rapidly evolving based on new materials and deposition approaches. At present, PV is predominately based on crystalline and polycrystalline Si and is growing at >40% per year with production rapidly approaching 3 gigawatts/year with PV installations supplying <1% of energy used in the world. Increased cell efficiency and reduced manufacturing expenses are critical in achieving reasonable costs for PV and solarthermal. CdTe thin-film solar cells have reported a manufactured cost of $1.25/watt. There is also the promise of increased efficiency by use of multijunction cells or hybrid devices organized at the nanoscale. This could lead to conversion efficiencies of greater than 50%. Solar energy conversion increasingly represents one of the largest new businesses currently emerging in any sector of the economy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

1.Energy Information Administration, Annual Energy Review 2003 (EIA, 2004; www.eia.doe.gov/emeu/aer/contents.html) (accessed January 2008).Google Scholar
2.Shockley, W., Queisser, H.J., J. Appl. Phys. 32 (3), 510 (1961).CrossRefGoogle Scholar
3.International Electrotechnical Commission, “IEC Norm” (IEC-904–3, 1989).Google Scholar
4.Taira, S., Yoshimine, Y., Baba, T., Taguchi, M., Kanno, H., Kinoshita, T., Sakata, H., Maruyama, E., Tanaka, M., Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 4, 932 (September 2007).Google Scholar
5.Green, M.A., Emery, K., King, D.L., Hishikawa, Y., Warta, W., Prog. Photovoltaics: Res. Appl. 15 (1), 35 (2007).CrossRefGoogle Scholar
6.Surek, T., J. Cryst. Growth 275 (1–2), 292 (2005).CrossRefGoogle Scholar
7.Margolis, R.M., Presented at NCPV Solar Program Review Meeting, Denver, CO, 2003.Google Scholar
8.Eaglesham, D., “First Solar, Inc. Announces 2006 Fourth Quarter and Year-end Financial Results” (First Solar, Phoenix, AZ, 2007; http://investor.frstsolar.com/releasedetail.cfm?ReleaseID=229824) (accessed January 2008).Google Scholar
9.Green, M.A., Physica E 14 (1–2), 65 (Amsterdam, The Netherlands, 2002).Google Scholar
10.Green, M.A., Photovoltaics for the 21st Century: Proceedings of the Electrochemical Society 2001–10, 3 (2001).Google Scholar
11.Slaoui, A., Collins, R.T., MRS Bull. 32 (3), 211 (2007).CrossRefGoogle Scholar
12.Yan, B., Yue, G., Owens, J.M., Yang, J., Guha, S., Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 2, 1477 (2006).Google Scholar
13.Dimroth, F., Kurtz, S., MRS Bull. 32 (3), 230 (2007).CrossRefGoogle Scholar
14.Contreras, M.A., Romero, M.J., Nouf, R., Thin Solid Films 511–512, 51 (2006).CrossRefGoogle Scholar
15.Wu, X., Solar Energy 77 (6), 803 (2004).CrossRefGoogle Scholar
16.Contreras, M.A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., Nouf, R., Prog. Photovoltaics: Res. Appl. 7 (4), 311 (1999).3.0.CO;2-G>CrossRefGoogle Scholar
17.AbuShama, J., Nouf, R., Yan, Y., Jones, K., Keyes, B., Dippo, P., Romero, M., Al-Jassim, M., Alleman, J., Williamson, D.L., Cu(In,Ga)Se2 Thin-Film Evolution During Growth from (In,Ga)2Se3 Precursors (Mat. Res. Soc. Symp. Proc. Vol. 668, Warrendale, PA, 2001).Google Scholar
18.Romeo, A., Terheggen, M., Abou-Ras, D., Batzner, D.L., Haug, F.J., Kalin, M., Rudmann, D., Tiwari, A.N., Prog. Photovoltaics: Res. Appl. 12 (2–3), 93 (2004).CrossRefGoogle Scholar
19.Shaheen, S.E., Ginley, D.S., Jabbour, G.E., MRS Bull. 30 (1), 10 (2005).CrossRefGoogle Scholar
20.Collins, G., Sci. Am. 74 (2004).CrossRefGoogle Scholar
21.de Leeuw, D.M., Phys. World 12 (3), 31 (1999).CrossRefGoogle Scholar
22.Shaheen, S.E., Radspinner, R., Peyghambarian, N., Jabbour, G.E., Appl. Phys. Lett. 79 (18), 2996 (2001).CrossRefGoogle Scholar
23.Hering, G., Photon Int. 10, 92 (2006).Google Scholar
24.Green, M.A., in Future Trends in Microelectronics: Up to Nano Creek, Luryi, S., Xu, J., Zaslavsky, A., Eds. (Wiley Interscience, New York, 2007), p. 391.Google Scholar
25.Trupke, T., Green, M.A., Wurfel, P., J. Appl. Phys. 92 (7), 4117 (2002).CrossRefGoogle Scholar
26.Trupke, T., Green, M.A., Wurfel, P., J. Appl. Phys. 92 (3), 1668 (2002).CrossRefGoogle Scholar
27.Beard, M.C., Knutsen, K.P., Yu, P., Luther, J.M., Song, Q., Metzger, W.K., Ellingson, R.J., Nozik, A.J., Nano Lett. 7 (8), 2506 (2007).CrossRefGoogle Scholar
28.Miles, R.W., Zoppi, G., Forbes, I., Mater. Today 10 (11), 20 (2007).CrossRefGoogle Scholar
29.Messenger, R., Goswami, D.Y., Upadhyaya, H.M., Razykov, T.M., Tiwari, A.N., Winston, R., McConnell, R., in Energy Conversion, Yogi Goswami, D., Kreith, F., Eds. (CRC Press, Boca Raton, FL, 2007), p. 20.Google Scholar
30.Green, M., J. Mater Sci. 18 (Suppl. 1), S15 (2007).Google Scholar
31.MRS Bull. 32 (3), (2007).Google Scholar
32.Mozer, A.J., Sariciftci, N.S., in Handbook of Conducting Polymers, Skotheim, T.A., Reynolds, John, Eds. (CRC Press, Boca Raton, FL, ed. 3, 2007), vol. 2, p. 10.Google Scholar
33.MRS Bull. 30 (1), (2005).CrossRefGoogle Scholar
34.Conibeer, G., Mater. Today 10 (11), 42 (2007).CrossRefGoogle Scholar
35.Luque, A., Marti, A., Nozik, A.J., MRS Bull. 32 (3), 236 (2007).CrossRefGoogle Scholar
36.Mills, D., Solar Energy 76 (1–3), 19 (2004).CrossRefGoogle Scholar