Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T13:23:47.507Z Has data issue: false hasContentIssue false

Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Semiconductor quantum dots may be used in so-called third-generation solar cells that have the potential to greatly increase the photon conversion efficiency via two effects: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that use sub-bandgap photons to form separable electron–hole pairs. This is possible because quantization of energy levels in quantum dots produces the following effects: enhanced Auger processes and Coulomb coupling between charge carriers; elimination of the requirement to conserve crystal momentum; slowed hot electron–hole pair (exciton) cooling; multiple exciton generation; and formation of minibands (delocalized electronic states) in quantum dot arrays. For exciton multiplication, very high quantum yields of 300–700% for exciton formation in PbSe, PbS, PbTe, and CdSe quantum dots have been reported at photon energies about 4–8 times the HOMO–LUMO transition energy (quantum dot bandgap), respectively, indicating the formation of 3–7 excitons/photon, depending upon the photon energy. For intermediate-band solar cells, quantum dots are used to create the intermediate bands from the con fined electron states in the conduction band. By means of the intermediate band, it is possible to absorb below-bandgap energy photons. This is predicted to produce solar cells with enhanced photocurrent without voltage degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shockley, W. and Queisser, H.J., J. Appl. Phys. 32 (1961) p. 510.CrossRefGoogle Scholar
2.Nozik, A.J., Annu. Rev. Phys. Chem. 52 (2001) p. 193.CrossRefGoogle Scholar
3.Ross, R.T. and Nozik, A.J., J. Appl. Phys. 53 (1982) p. 3813.CrossRefGoogle Scholar
4.Boudreaux, D.S., Williams, F., and Nozik, A.J., J. Appl. Phys. 51 (1980) p. 2158.CrossRefGoogle Scholar
5.Landsberg, P.T., Nussbaumer, H., and Willeke, G., J. Appl. Phys. 74 (1993) p. 1451.CrossRefGoogle Scholar
6.Kolodinski, S., Werner, J.H., Wittchen, T., and Queisser, H.J., Appl. Phys. Lett. 63 (1993) p. 2405.CrossRefGoogle Scholar
7.Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., and Efros, A.L., Nano Lett. 5 (2005) p. 865.CrossRefGoogle Scholar
8.Hanna, M.C. and Nozik, A.J., J. Appl. Phys. 100 074510 (2006).CrossRefGoogle Scholar
9.Luque, A. and Martí, A., Phys. Rev. Lett. 78 (1997) p. 5014.CrossRefGoogle Scholar
10.Luque, A. and Martí, A., Prog. Photovoltaics: Res. Appl. 9 (2001) p. 73.CrossRefGoogle Scholar
11.Bude, J. and Hess, K., J. Appl. Phys. 72 (1992) p. 3554.CrossRefGoogle Scholar
12.Jung, H.K., Taniguchi, K., and Hamaguchi, C., J. Appl. Phys. 79 (1996) p. 2473.CrossRefGoogle Scholar
13.Harrison, D., Abram, R.A., and Brand, S., J. Appl. Phys. 85 (1999) p. 8186.CrossRefGoogle Scholar
14.Christensen, O., J. Appl. Phys. 47 (1976) p. 690.CrossRefGoogle Scholar
15.Wolf, M., Brendel, R., Werner, J.H., and Queisser, H.J., J. Appl. Phys. 83 (1998) p. 4213.CrossRefGoogle Scholar
16.Schaller, R. and Klimov, V., Phys. Rev. Lett. 92 186601 (2004).CrossRefGoogle Scholar
17.Murphy, J.E., Beard, M.C., Norman, A.G., Ahrenkiel, S.P., Johnson, J.C., Yu, P., Micic, O.I., Ellingson, R.J., and Nozik, A.J., J. Am. Chem. Soc. 128 (2006) p. 3241.CrossRefGoogle Scholar
18.Shabaev, A., Efros, Al. L., and Nozik, A.J., Nano Lett. 6 (2006) p. 2856.CrossRefGoogle Scholar
19.Schaller, R.D., Sykora, M., Pietryga, J.M., and Klimov, V.I., Nano Lett. 6 (2006) p. 424.CrossRefGoogle Scholar
20.Schaller, R.D., Petruska, M.A., and Klimov, V.I., Appl. Phys. Lett. 87 253102 (2005).CrossRefGoogle Scholar
21.Schaller, R.D., Agranovich, V.M., and Klimov, V.I., Nature Phys. 1 (2005) p. 189.CrossRefGoogle Scholar
22.Franceschetti, A., An, J.M., and Zunger, A., Nano Lett. 6 (2006) p. 2191.CrossRefGoogle Scholar
23.Hagfeldt, A. and Grätzel, M., Acc. Chem. Res. 33 (2000) p. 269.CrossRefGoogle Scholar
24.Moser, J., Bonnote, P., and Grätzel, M., Coord. Chem. Rev. 171 (1998) p. 245.CrossRefGoogle Scholar
25.Grätzel, M., Prog. Photovoltaics 8 (2000) p. 171.3.0.CO;2-U>CrossRefGoogle Scholar
26.Zaban, A., Micic, O.I., Gregg, B.A., and Nozik, A.J., Langmuir 14 (1998) p. 3153.CrossRefGoogle Scholar
27.Vogel, R. and Weller, H., J. Phys. Chem. 98 (1994) p. 3183.CrossRefGoogle Scholar
28.Weller, H., Ber. Bunsen-Ges. Phys. Chem. 95 (1991) p. 1361.CrossRefGoogle Scholar
29.Liu, D. and Kamat, P.V., J. Phys. Chem. 97 (1993) p. 10769.CrossRefGoogle Scholar
30.Hoyer, P. and Könenkamp, R., Appl. Phys. Lett. 66 (1995) p. 349.CrossRefGoogle Scholar
31.Greenham, N.C., Peng, X., and Alivisatos, A.P., Phys. Rev. B 54 (1996) p. 17628.CrossRefGoogle Scholar
32.Greenham, N.C., Peng, X., and Alivisatos, A.P., “A CdSe Nanocrystal/MEH-PPV Polymer Composite Photovoltaic” in Future Generation Photovoltaic Technologies: First NREL Conf., edited by McConnell, R. (AIP, 1997) p. 295.Google Scholar
33.Huynh, W.U., Peng, X., and Alivisatos, P., Adv. Mater. 11 (1999) p. 923.3.0.CO;2-T>CrossRefGoogle Scholar
34.Luque, A., Martí, A., and Cuadra, L., IEEE Trans. Electron Dev. 50 (2003) p. 447.CrossRefGoogle Scholar
35.Luque, A., Martí, A., and Cuadra, L., Physica E 14 (2002) p. 107.CrossRefGoogle Scholar
36.Luque, A., Martí, A., and Cuadra, L., IEEE Trans. Electron Dev. 48 (2001) p. 2118.CrossRefGoogle Scholar
37.Luque, A., Martí, A., Antolín, E., and Tablero, C., Physica B 382 (2006) p. 320.CrossRefGoogle Scholar
38.Martí, A., Cuadra, L., and Luque, A., in Proc. 28th IEEE Photovoltaics Specialists Conf. (IEEE, Piscataway, NJ, 2000) p. 940.Google Scholar
39.Mott, N.F., Rev. Mod. Phys. 40 (1968) p. 677.CrossRefGoogle Scholar
40.Nozik, A.J., in The Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, edited by Martí, A., Luque, A. (Institute of Physics, Bristol, UK, 2003) p. 196.Google Scholar
41.Woggon, U., in Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics (Springer-Verlag, Heidelberg, 1996) p. 115.Google Scholar
42.Mukai, K. and Sugawara, M., in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by Sugawara, M. (Academic Press, San Diego, 1999) p. 209.Google Scholar
43.Martí, A., Cuadra, L., and Luque, A., IEEE Trans. Electron Dev. 48 (2001) p. 2394.CrossRefGoogle Scholar
44.Nakata, Y., Sugiyama, Y., and Sugawara, M., in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by Sugawara, M. (Academic Press, San Diego, 1999) p. 117.Google Scholar
45.Luque, A., Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., Caballero, L.J., Cuadra, L., and Balenzategui, J.L., Appl. Phys. Lett. 87 083505 (2005).CrossRefGoogle Scholar
46.Luque, A., Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C.R., Farmer, C., and Díaz, P., J. Appl. Phys. 99 094503 (2006).CrossRefGoogle Scholar
47.Luque, A., Martí, A., Stanley, C., López, N., Cuadra, L., Zhou, D., and McKee, A., J. Appl. Phys. 96 (2004) p. 903.CrossRefGoogle Scholar
48.Nozik, A.J., Physica E 14 (2002) p. 115.CrossRefGoogle Scholar
49.Ellingson, R.J., Blackburn, J.L., Beard, M., Micic, O.I., Yu, P., Murphy, J., and Nozik, A.J., in Proc. ECS Meet., edited by Lian, T., Murakoshi, K., and Rumbles, G. (San Antonio, 2004).Google Scholar