Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T08:06:35.237Z Has data issue: false hasContentIssue false

Size- and shape-dependent photocatalysis of porphyrin nanocrystals

Published online by Cambridge University Press:  11 March 2019

Qi Li
Affiliation:
Key Laboratory for Special Functional Materials of the Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, China; [email protected]
Nana Zhao
Affiliation:
Key Laboratory for Special Functional Materials of the Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, China; [email protected]
Feng Bai
Affiliation:
Key Laboratory for Special Functional Materials of the Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, China; [email protected]
Get access

Abstract

The design and engineering of the size and shapes of photoactive building blocks enable the fabrication of functional nanocrystals, especially for applications in light harvesting, photocatalytic synthesis, water splitting, and photodegradation. Synthesis of such nanocrystals has been demonstrated recently through noncovalent interactions such as π–π stacking and ligand coordination using optically active porphyrin as a functional building block. Depending on the kinetic conditions, the resulting nanocrystals exhibit well-defined one- to three-dimensional shapes such as spheres, nanowires, and nano-octahedra. These well-defined porphyrin nanocrystals show interesting size- and shape-dependent photocatalytic activity. This article reviews the synthesis and formation of porphyrin nanocrystals with controlled size and shape. Important photocatalytic processes such as photodegradation of organic pollutants, photocatalytic water splitting and hydrogen production, and photosynthesis of metallic fuel-cell catalysts are highlighted. Insights on size- and shape-dependent properties are discussed.

Type
Self-Assembled Porphyrin and Macrocycle Derivatives
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dolgopolova, E.A., Shustova, N.B., MRS Bull . 41 (11), 890 (2016).Google Scholar
Geng, G., Wang, Z., Chen, P., Guan, B., Yang, C., Liu, M., Phys. Chem. Chem. Phys. 20, 8488 (2018).Google Scholar
Munir, R., MRS Bull . 43 (1), 9 (2018).Google Scholar
Zhang, X., Wang, Y., Chen, P., Guo, P., Liu, M., RSC Adv . 5, 78427 (2015).Google Scholar
Sendt, K., Johnston, L.A., Hough, W.A., Crossley, M.J., Hush, N.S., Reimers, J.R., J. Am. Chem. Soc. 124, 9299 (2002).Google Scholar
Gong, X., Milic, T., Xu, C., Batteas, J.D., Drain, C.M., J. Am. Chem. Soc. 124, 14290 (2002).Google Scholar
Wang, Z.C., Li, Z.Y., Medforth, C.J., Shelnutt, J.A., J. Am. Chem. Soc. 129, 2440 (2007).Google Scholar
Li, Q., Bai, F., in Synthesis and Applications of Optically Active Nanomaterials, Bai, F., Fan, H., Eds. (World Scientific Publisher, Hackensack, NJ, 2017), p. 57.CrossRefGoogle Scholar
So, M.C., Beyzavi, M.H., Sawhney, R., Shekhah, O., Eddaoudi, M., Al-Juaid, S.S., Hupp, J.T., Farha, O.K., Chem. Commun. 51, 85 (2015).Google Scholar
Liu, K., Xing, R., Chen, C., Shen, G., Yan, L., Zou, Q., Ma, G., Möhwald, H., Yan, X., Angew. Chem. Int. Ed. Engl. 54, 500 (2015).Google Scholar
Wang, T., Chen, S.R., Jin, F., Cai, J.H., Cui, L.Y., Zheng, Y.M., Wang, J.X., Song, Y.L., Jiang, L., Chem. Commun. 51, 1367 (2015).Google Scholar
Wei, P., Yan, X., Huang, F., Chem. Soc. Rev. 44, 815 (2015).Google Scholar
Caselli, M., RSC Adv . 5, 1350 (2015).Google Scholar
Jana, A., Gobeze, H.B., Ishida, M., Mori, T., Ariga, K., Hill, J.P., D’Souza, F., Dalton Trans . 44, 359 (2015).Google Scholar
Zhao, Q., Wang, Y., Qiao, Y., Wang, X., Guo, X., Yan, Y., Huang, J., Chem. Commun. 50, 13537 (2014).Google Scholar
Wang, Y., Shi, R., Lin, J., Zhu, Y., Energy Environ. Sci. 4, 2922 (2011).Google Scholar
Vasilopoulou, M., Douvas, A., Georgiadou, D., Constantoudis, V., Davazoglou, D., Kennou, S., Palilis, L., Daphnomili, D., Coutsolelos, A., Argitis, P., Nano Res . 7, 679 (2014).Google Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., , X., Bai, F., Wu, H., Haddad, R., Fan, H., Nano Lett . 14, 7175 (2014).Google Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R., Fan, H., ACS Nano 8, 827 (2014).Google Scholar
Geng, G., Chen, P., Guan, B., Jiang, L., Xu, Z., Di, D., Tu, Z., Hao, W., Yi, Y., Chen, C., Liu, M., Hu, W., ACS Nano 11, 4866 (2017).Google Scholar
Guo, P.P., Chen, P.L., Ma, W.H., Liu, M.H., J. Mater. Chem. 22, 20243 (2012).Google Scholar
Zhang, C., Chen, P., Dong, H., Zhen, Y., Liu, M., Hu, W., Adv. Mater. 27, 5379 (2015).Google Scholar
Mandal, S., Nayak, S.K., Mallampalli, S., Patra, A., ACS Appl. Mater. Interfaces 6, 130 (2014).Google Scholar
Chen, Y.Z., Li, A.X., Huang, Z.H., Wang, L.N., Kang, F.Y., Nanomaterials 6, 51 (2016).Google Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett . 18, 560 (2018).Google Scholar
Wang, J., Zhong, Y., Wang, L., Zhang, N., Cao, R., Bian, K., Alarid, L., Haddad, R.E., Bai, F., Fan, H., Nano Lett . 16, 6523 (2016).Google Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R.E., Xiao, X., Fan, H., Nano Lett . 11, 3759 (2011).Google Scholar
Wang, Z., Medforth, C.J., Shelnutt, J.A., J. Am. Chem. Soc. 126, 16720 (2004).Google Scholar
Tian, Y., Martin, K.E., Shelnutt, J.Y.T., Evans, L., Busani, T., Miller, J.E., Medforth, C.J., Shelnutt, J.A., Chem. Commun. 47, 6069 (2011).Google Scholar