Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:02:47.297Z Has data issue: false hasContentIssue false

Single-Molecule Magnets

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Magnets are widely used in a large number of applications, and their market is larger than that of semiconductors. Information storage is certainly one of the most important uses of magnets, and the lower limit to the size of the memory elements is provided by the superparamagnetic size, below which information cannot be permanently stored because the magnetization freely fluctuates. This occurs at room temperature for particles in the range of 10–100 nm, owing to the nature of the material. However, even smaller particles can in principle be used either by working at lower temperatures or by taking advantage of the onset of quantum size effects, which can make nanomagnets candidates for the construction of quantum computers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aubin, S.M.J., Wemple, M.W., Adams, D.M., Tsai, H.-L., Christou, G., and Hendrickson, D.N., J. Am. Chem. Soc. 118 (1996) p. 7746.CrossRefGoogle Scholar
2.Sessoli, R., Tsai, H.-L., Schake, A.R., Wang, S., Vincent, J.B., Folting, K., Gatteschi, D., Christou, G., and Hendrickson, D.N., J. Am. Chem. Soc. 115 (1993) p. 1804.CrossRefGoogle Scholar
3.Sessoli, R., Gatteschi, D., Caneschi, A., and Novak, M.A., Nature 365 (1993) p. 141.CrossRefGoogle Scholar
4. For a list a references on single-molecule magnets, see Aubin, S.M.J., Sun, Z., Pardi, L., Krzystek, J., Folting, K., Brunel, L.-C., Rheingold, A.L., Christou, G., and Hendrickson, D.N., Inorg. Chem. 38 (1999) p. 5329.CrossRefGoogle Scholar
5.Sessoli, R., Mol. Cryst. Liq. Cryst. 274 (1995) p. 145.CrossRefGoogle Scholar
6.Novak, M.A., Sessoli, R., Caneschi, A., and Gatteschi, D., J. Magn. Magn. Mater. 146 (1995) p. 211.CrossRefGoogle Scholar
7.Gatteschi, D., Sessoli, R., and Cornia, A., Chem. Commun. (2000) p. 725.CrossRefGoogle Scholar
8.Aromi, G., Aubin, S.M.J., Bolcar, M.A., Christou, G., Eppley, H.J., Folting, K., Hendrickson, D.N., Huffman, J.C., Squire, R.C., Tsai, H.-L., Wang, S., and Wemple, M.W., Polyhedron 17 (1998) p. 3005.CrossRefGoogle Scholar
9.Aromi, G., Claude, J.-P., Knapp, M.J., Huffman, J.C., Hendrickson, D.N., and Christou, G., J. Am. Chem. Soc. 120 (1998) p. 2977.CrossRefGoogle Scholar
10.Abbati, G.L., Cornia, A., Fabretti, A.C., Caneschi, A., and Gatteschi, D., Inorg. Chem. 37 (1998) p. 1430.CrossRefGoogle Scholar
11.Aubin, S.M.J., Dilley, N.R., Pardi, L., Krzystek, J., Wemple, M.W., Brunel, L.-C., Maple, M.B., Christou, G., and Hendrickson, D.N., J. Am. Chem. Soc. 120 (1998) p. 4991.CrossRefGoogle Scholar
12.Clemente-León, M., Soyer, H., Coronado, E., Mingotaud, C., Gómez-García, C.J., and Delhaes, P., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 2842.3.0.CO;2-B>CrossRefGoogle Scholar
13.Chudnovsky, E.M. and Tejada, J., Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
14.Friedman, J.R., Sarachik, M.P., Tejada, J., Maciejewski, J., and Ziolo, R., J. Appl. Phys. 79 (1996) p. 6031.CrossRefGoogle Scholar
15.Friedman, J.R., Sarachik, M.P., Tejada, J., Maciejewski, J., and Ziolo, R., Phys. Rev. Lett. 76 (1996) p. 3830.CrossRefGoogle Scholar
16.Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R., and Barbara, B., Nature 383 (1996) p. 145.CrossRefGoogle Scholar
17.Barra, A.L., Debrunner, P., Gatteschi, D., Schulz, Ch. E., and Sessoli, R., Europhys. Lett. 35 (1996) p. 133.CrossRefGoogle Scholar
18.Caciuffo, R., Amoretti, G., Murani, A., Sessoli, R., Caneschi, A., and Gatteschi, D., Phys. Rev. Lett. 81 (1998) p. 4744.CrossRefGoogle Scholar
19.Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R., and Gatteschi, D., Phys. Rev. Lett. 78 (1997) p. 4645.CrossRefGoogle Scholar
20.Wernsdorfer, W., Sessoli, R., Caneschi, A., Gatteschi, D., Cornia, A., and Mailly, D., J. Appl. Phys. 87 (2000) p. 5481.CrossRefGoogle Scholar
21.Wernsdorfer, W. and Sessoli, R., Science 284 (1999) p. 133.CrossRefGoogle Scholar
22.Wernsdorfer, W., Caneschi, A., Sessoli, R., Gatteschi, D., Cornia, A., Villar, V., and Paulsen, C., Phys. Rev. Lett. 84 (2000) p. 2965.CrossRefGoogle Scholar
23.Eppley, H.J., Tsai, H.-L., de Vries, N., Folting, K., Christou, G., and Hendrickson, D.N., J. Am. Chem. Soc. 117 (1995) p. 301.CrossRefGoogle Scholar
24.Aubin, S.M.J., Spagna, S., Eppley, H.J., Folting, K., Christou, G., and Hendrickson, D.N., Mol. Cryst. Liq. Cryst. 305 (1997) p. 181.CrossRefGoogle Scholar
25.Gomes, A.M., Novak, M.A., Wernsdorfer, W., Sessoli, R., Sorace, L., and Gatteschi, D., J. Appl. Phys. 87 (2000) p. 6004.CrossRefGoogle Scholar
26.Ruiz, D., Sun, Z., Aubin, S.M.J., Rumberger, E., Incarvito, C., Folting, K., Christou, G., and Hendrickson, D.N., Mol. Cryst. Liq. Cryst. 335 (1999) p. 413.CrossRefGoogle Scholar
27.Wernsdorfer, W., Sessoli, R., and Gatteschi, D., Europhys. Lett. 47 (1999) p. 254.CrossRefGoogle Scholar