Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:29:18.198Z Has data issue: false hasContentIssue false

Simulation of Defects and Diffusion Phenomena in Silicon

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Blochl, P.E., Smargiassi, E., Car, R., Laks, D.B., Andreoni, W., and Pantelides, S.T., Phys. Rev. Lett. 70 (1993) p. 2435.CrossRefGoogle Scholar
2.Ho, K.-M., Shvarstburg, A.A., Pan, B., Lu, Z.-Y., Wang, C.-Z., Wacker, J.G., Fye, J.L., and Jarrold, M.F., Nature 392 (1998) p. 582.CrossRefGoogle Scholar
3.Kim, J., Kirchoff, F., Aulbur, W.G., Wilkins, J.W., Khan, F.S., and Kresse, G., Phys. Lett. 83 (1999) p. 1990.CrossRefGoogle Scholar
4.Arai, N., Takeda, S., and Kohyama, M., Phys. Rev. Lett. 78 (1997) p. 4265.CrossRefGoogle Scholar
5.Gilmer, G.H., de la Rubia, T. Diaz, Stock, D.M., and Jaraíz, M., Nucl. Instrum. Methods B 102 (1995) p. 247.CrossRefGoogle Scholar
6.de la Rubia, T. Diaz and Gilmer, G.H., Phys. Rev. Lett. 74 (1995) p. 2507.CrossRefGoogle Scholar
7.Voter, A., Phys. Rev. Lett. 78 (1997) p. 3908.CrossRefGoogle Scholar
8.Luo, W., Rasband, P.B., and Clancy, P., J. Appl. Phys. 84 (1998) p. 2476.CrossRefGoogle Scholar
9.Robinson, M.T. and Torrens, I.M., Phys. Rev. B 9 (1974) p. 5008.CrossRefGoogle Scholar
10.Pelaz, L., Jaraíz, M., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Eaglesham, D.J., and Poate, J.M., Appl. Phys. Lett. 70 (1997) p. 2285.CrossRefGoogle Scholar
11.Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65 (1994) p. 2305.CrossRefGoogle Scholar
12.Zhu, J., de la Rubia, T. Diaz, Yang, L.H., and Mailhiot, C., Phys. Rev. B54 (1996) p. 4741.CrossRefGoogle Scholar
13.Sugino, O. and Oshiyama, A., Phys. Rev. B 46 (1992) p. 12335.CrossRefGoogle Scholar
14.Packan, P.A. and Plummer, J.D., Appl. Phys. Lett. 56 (1990) p. 1787.CrossRefGoogle Scholar
15.Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., and Poate, J.M., Nucl. Instrum. Methods Phys. Res., Sect. B 96 (1995) p. 187.CrossRefGoogle Scholar
16.Pelaz, L., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Jaraíz, M., and Barbolla, J., Appl. Phys. Lett. 74 (1999) p. 3657.CrossRefGoogle Scholar
17.National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 1997) p. 188.Google Scholar
18.Wong, H.-S. and Taur, Y., in Proc. IEEE Int. Electron Devices Meet. ‘93 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1993) p. 705.CrossRefGoogle Scholar
19.Hu, S.M., J. Appl. Phys. 45 (1974) p. 1567.CrossRefGoogle Scholar
20.Griffin, P.B., Fahey, P.M., Plummer, J.D., and Dutton, R.W., Appl. Phys. Lett. 47 (1985) p. 319.CrossRefGoogle Scholar
21.Griffin, P.B. and Plummer, J.D., in Proc. IEEE Int. Electron Devices Meet.'86 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1986) p. 522.Google Scholar
22.Bronner, G.B. and Plummer, J.D., J. Appl. Phys. 61 (1987) p. 5286.CrossRefGoogle Scholar
23.Moller, K., Jones, K.S., and Law, M.E., Appl. Phys. Lett. 72 (1998) p. 2547.CrossRefGoogle Scholar
24.Agarwal, A., Haynes, T.E., Eaglesham, D.J., Gossmann, H.-J., Jacobson, D.C., Poate, J.M., and Erokin, Y.E., Appl. Phys. Lett. 70 (1997) p. 3332.CrossRefGoogle Scholar
25.Lilak, A.D., Earles, S.K., Law, M.E., and Jones, K.S., Appl. Phys. Lett. 74 (14) (1999) p. 2038.CrossRefGoogle Scholar
26.Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65 (1994) p. 2305.CrossRefGoogle Scholar
27.Rafferty, C.S., Gilmer, G.H., Jaraíz, M., Eaglesham, D.J., and Gossmann, H.-J., Appl. Phys. Lett. 68 (1996) p. 2395.CrossRefGoogle Scholar
28.Hobler, G. and Rafferty, C.S., in Si Front-End Processing—Physics and Technology of Dopant-Defect Interactions, edited by Gossmann, H.-J.L., Haynes, T.E., Law, M.E., Larsen, A. Nylandsted, and Odanaka, S. (Mater. Res. Soc. Symp. Proc. 568, Warrendale, PA, 1999) p. 123.Google Scholar
29.Packan, P.A. and Plummer, J.D., Appl. Phys. Lett. 56 (1990) p. 1787.CrossRefGoogle Scholar