Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:39:39.083Z Has data issue: false hasContentIssue false

Silicon-Based Metal-Semiconductor-Metal Detectors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Photodetectors must provide fast and efficient conversion of photons to charge carriers. When considering semiconductor light sources, the indirect bandgap of silicon and germanium represents a serious obstacle to radiative electron-hole recombinations. Momentum conservation demands the simultaneous interaction of the electron-hole pair with a momentum-matching phonon. As a consequence, radiative recombinations are five orders of magnitude less probable in Si if compared to a direct semiconductor such as GaAs.

Although the absorption of a photon and the generation of an electron-hole pair may be considered as the inverse process to emission, photon absorption within indirect semiconductors is a highly probable process if the photon energy is sufficient to bridge the energy gap in a direct process. The resulting electronhole pair is created in an excited state and relaxes sequentially. The ubiquitous-silicon solar cells operate this way. In the visible spectral range, Si photodetectors have demonstrated fast and efficient performance, being readily adapted for opto electronic applications and being fully compatible to standard-silicon processing schemes.

Type
Silicon-Based Optoelectronics
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sze, S.M., High-Speed Semiconductor Devices (John Wiley & Sons, New York, 1990).Google Scholar
2.Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981).Google Scholar
3.Saleh, B.E.A. and Teich, M.C., Fundamentals of Photonics (John Wiley & Sons, New York, 1991).CrossRefGoogle Scholar
4.Burm, J., Litvin, K.I., Schaff, W.J., and Eastman, L.F., IEEE Photonics Tech. Lett. 6 (6) (1994) p. 722.CrossRefGoogle Scholar
5.Auston, D.H., “Probing Semiconductors With Femtosecond Pulses,” Phys. Today 43 (1990) p. 46.CrossRefGoogle Scholar
6.Auston, D.H., Johnson, A.M., Smith, P.R., and Bean, J.C., Appl. Phys. Lett. 37 (1980) p. 371.CrossRefGoogle Scholar
7.Sharma, A.K., Scott, K.A.M., Brueck, S.R.J., Zolper, J.C., and Myers, D.R., IEEE Photonics Tech. Lett. 6 (5) (1994) p. 635.CrossRefGoogle Scholar
8.Dutta, N.K., Nichols, D.T., Jacobson, D.C., and Livescu, G., Appl. Opt. 36 (6) (1997) p. 1180.CrossRefGoogle Scholar
9.Liu, M.Y. and Chou, S.Y., “Picosecond Silicon Metal-Semiconductor-Metal Photodiode,” Proc. SP1E 2022 (1993) p. 76.Google Scholar
10.Alexandrou, S., Wang, C-C., Hsiang, T.Y., Liu, M.Y., and Chou, S.Y, Appl. Phys. Lett. 62 (20) (1993) p. 2507.CrossRefGoogle Scholar
11.Liu, M.Y., Chen, E., and Chou, S.Y., Appl. Phys. Lett. 65 (7) (1994) p. 887.CrossRefGoogle Scholar
12.Wang, C-C., Alexandrou, S., Jacobs-Perkins, D., and Hsiang, T.Y., Appl. Phys. Lett. 64 (26) (1994) p. 3578.CrossRefGoogle Scholar
13.Chen, E. and Chou, S.Y., Appl. Phys. Lett. 70 (6) (1997) p. 753.CrossRefGoogle Scholar
14.Levine, B.F., Wynn, J.D., Klemens, F.P., and Sarusi, G., Appl. Phys. Lett. 66 (22) (1995) p. 2984.CrossRefGoogle Scholar
15.Ho, J.Y.L. and Wong, K.S., Appl. Phys. Lett. 69 (1) (1996) p. 16.CrossRefGoogle Scholar
16.Rüders, F., Kim, J., Hacke, M., Mesters, S., Buchal, Ch., and Mantl, S., Thin Solid Films 294 (1997) p. 351.CrossRefGoogle Scholar
17.Mantl, S., “Ion Beam Synthesis of Epitaxial Silicides: Fabrication, Characterization and Applications,” Mater. Set. Rep. 8 (1992) p. 1.CrossRefGoogle Scholar
18.Siegert, M., Loken, M., Glingener, Ch., and Ch. Buchal (unpublished manuscript).Google Scholar
19.Sagnes, I., Campidelli, Y., Chevalier, F., Bodnar, S., Renard, C., and Badoz, P.A., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L.J., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, 1994) p. 65.Google Scholar
20.Schwarz, C. and von Kanel, H., J. Appl. Phys. 79 (11) (1996) p. 8798.CrossRefGoogle Scholar
21.Fathauer, R.W., Iannelli, J.M., Nieh, C.W., and Hashimoto, S., Appl. Phys. Lett. 57 (14) (1990) p. 1419.CrossRefGoogle Scholar
22.Roca, E., Larsen, K. Kyllesbech, Kolodinski, S., and Mertens, R., Appl. Phys. Lett. 67 (10) (1995) p. 1372.CrossRefGoogle Scholar
23.Kosonocky, W.F., Proc. SPIE 1308 (1990) p. 2.CrossRefGoogle Scholar
24.Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Di Gaspare, L., Palange, F, and Evangelisti, F., in Materials and Devices for Silicon-Based Optoelectronics (Mater. Res. Soc. Symp. Proc. 486, Pittsburgh, 1998).Google Scholar
25.Zhou, G.L. and Morkoc, H., Thin Solid Films 231 (1993) p. 125.CrossRefGoogle Scholar