Published online by Cambridge University Press: 08 October 2015
Efficient structural design and thermal management for aerospace structures demand next-generation lightweight thermally conductive and mechanically robust materials to withstand high-velocity impacts and distribute localized heat fluxes from spacecraft components. Notwithstanding the excellent mechanical, electrical, and thermal properties of individual carbon nanotubes (CNTs), bulk CNT-based composites suffer from CNT anisotropy and high interjunction resistance. We provide a brief overview of scalable methods that can tune electrical and thermal connectivity in bulk CNT composites by tuning CNT shape, intertubular bonding, and packing density. These scalable production methods are posited to open new avenues for incorporating CNTs into thermal interface materials, structural reinforcement, and auxiliary power units in the form of energy-storage devices, especially for use in aerospace applications.