Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T07:14:19.591Z Has data issue: false hasContentIssue false

Self-folding thin-film materials: From nanopolyhedra to graphene origami

Published online by Cambridge University Press:  12 September 2012

Vivek B. Shenoy
Affiliation:
Engineering Department, Brown University; [email protected]
David H. Gracias
Affiliation:
Departments of Chemical and Biomolecular Engineering, Chemistry and the Institute for Nanobiotechnology, The Johns Hopkins University; [email protected]
Get access

Abstract

Self-folding of thin films is a more deterministic form of self-assembly wherein structures curve or fold up either spontaneously on release from the substrate or in response to specific stimuli. From an intellectual standpoint, the study of the self-folding of thin films at small size scales is motivated by the observation that a large number of naturally occurring materials such as leaves and tissues show curved, wrinkled, or folded micro- and nanoscale geometries. From a technological standpoint, such a self-assembly methodology is important since it can be used to transform the precision of existing planar patterning methods, such as electron-beam lithography, to the third dimension. Also, the self-folding of graphene promises a means to create a variety of three-dimensional carbon-based micro- and nanostructures. Finally, stimuli responsive self-folding can be used to realize chemomechanical and tether-free actuation at small size scales. Here, we review theoretical and experimental aspects of the self-folding of metallic, semiconducting, and polymeric films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stoney, G.G., Proc. R. Soc. London, Ser. A 82, 172 (1909).Google Scholar
Prinz, V.Y., Seleznev, V.A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazhenskii, V.V., Putyato, M.A., Gavrilova, T.A., Physica E 6, 828 (2000).CrossRefGoogle Scholar
Schmidt, O.G., Eberl, K., Nature 410, 168 (2001).CrossRefGoogle Scholar
Chua, C.L., Fork, D.K., Van Schuylenbergh, K., Lu, J.P., J. Microelectromech. Syst. 12, 989 (2003).CrossRefGoogle Scholar
Arora, W.J., Nichol, A.J., Smith, H.I., Barbastathis, G., Appl. Phys. Lett. 88, 053108 (2006).CrossRefGoogle Scholar
Tyagi, P., Bassik, N., Leong, T.G., Cho, J.H., Benson, B.R., Gracias, D.H., J. Microelectromech. Syst. 18, 784 (2009).CrossRefGoogle Scholar
Cho, J.H., James, T., Gracias, D.H., Adv. Mater. 22, 2320 (2010).CrossRefGoogle Scholar
Songmuang, R., Rastelli, A., Mendach, S., Schmidt, O.G., Appl. Phys. Lett. 90, 091905 (2007).CrossRefGoogle Scholar
Guan, J.J., He, H.Y., Hansford, D.J., Lee, L.J., J. Phys. Chem. B 109, 23134 (2005).CrossRefGoogle Scholar
Luchnikov, V., Sydorenko, O., Stamm, M., Adv. Mater. 17, 1177 (2005).CrossRefGoogle Scholar
Zakharchenko, S., Sperling, E., Ionov, L., Biomacromol. 12, 2211 (2011).CrossRefGoogle Scholar
Jamal, M., Zarafshar, A.M., Gracias, D.H., Nat. Commun. 2, 527 (2011).CrossRefGoogle Scholar
Mutilin, S.V., Vorobyova, J.S., Vorob’ev, A.B., Putyato, M.A., Prinz, V.Y., J. Phys. D: Appl. Phys. 44, 365104 (2011).CrossRefGoogle Scholar
Ma, L.B., Kiravittaya, S., Quinones, V.A.B., Li, S.L., Mei, Y.F., Schmidt, O.G., Opt. Lett. 36, 3840 (2011).CrossRefGoogle Scholar
Naumova, E.V., Prinz, V.Y., Golod, S.V., Seleznev, V.A., Soots, R.A., Kubarev, V.V., J. Opt. A: Pure Appl. Opt. 11, 074010 (2009).CrossRefGoogle Scholar
Smith, E.J., Schulze, S., Kiravittaya, S., Mei, Y.F., Sanchez, S., Schmidt, O.G., Nano Lett. 11, 4037 (2011).CrossRefGoogle Scholar
Monch, I., Makarov, D., Koseva, R., Baraban, L., Karnaushenko, D., Kaiser, C., Arndt, K.F., Schmidt, O.G., ACS Nano 5, 7436 (2011).CrossRefGoogle Scholar
Bufon, C.C.B., Gonzalez, J.D.C., Thurmer, D.J., Grimm, D., Bauer, M., Schmidt, O.G., Nano Lett. 10, 2506 (2010).CrossRefGoogle Scholar
Kim, J.B., Kim, P., Pégard, N.C., Oh, S.J., Kagan, C.R., Fleischer, J.W., Stone, H.A., Loo, Y.-L., Nat. Photonics 6, 327 (2012).CrossRefGoogle Scholar
He, H.Y., Guan, J.J., Lee, J.L., J. Controlled Release 110, 339 (2006).CrossRefGoogle Scholar
Yuan, B., Jin, Y., Sun, Y., Wang, D., Sun, J., Wang, Z., Zhang, W., Jiang, X., Adv. Mater. 24, 890 (2012).CrossRefGoogle Scholar
Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S., Schmidt, O.G., ACS Nano 6, 1751 (2012).CrossRefGoogle Scholar
Syms, R.R.A., Yeatman, E.M., Bright, V.M., Whitesides, G.M., J. Microelectromech. Syst. 12, 387 (2003).CrossRefGoogle Scholar
Leong, T.G., Zarafshar, A.M., Gracias, D.H., Small 6, 792 (2010).CrossRefGoogle ScholarPubMed
Syms, R.R.A., Yeatman, E.M., Electron. Lett. 29, 662 (1993).CrossRefGoogle Scholar
Bar-Cohen, Y., Electroactive Polymer (EAP) Actuators As Artificial Muscles: Reality, Potential, and Challenges (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2004).Google Scholar
Smela, E., Inganas, O., Pei, Q.B., Lundstrom, I., Adv. Mater. 5, 630 (1993).CrossRefGoogle Scholar
Smela, E., Inganas, O., Lundstrom, I., Science 268, 1735 (1995).CrossRefGoogle Scholar
Cho, J.H., Gracias, D.H., Nano Lett. 9, 4049 (2009).CrossRefGoogle Scholar
Cho, J.H., Keung, M.D., Verellen, N., Lagae, L., Moshchalkov, V.V., Van Dorpe, P., Gracias, D.H., Small 7, 1943 (2011).CrossRefGoogle Scholar
Cho, J.H., Azam, A., Gracias, D.H., Langmuir 26, 16534 (2010).CrossRefGoogle Scholar
Pandey, S., Ewing, M., Kunas, A., Nguyen, N., Gracias, D.H., Menon, G., Proc. Natl. Acad. Sci. U.S.A. 108, 19885 (2011).CrossRefGoogle Scholar
Bassik, N., Stern, G.M., Jamal, M., Gracias, D.H., Adv. Mater. 20, 4760 (2008).CrossRefGoogle Scholar
Syms, R.R.A., IEEE Photonics Technol. Lett. 12, 1519 (2000).CrossRefGoogle Scholar
In, H.J., Kumar, S., Shao-Horn, Y., Barbastathis, G., Appl. Phys. Lett. 88, 083104 (2006).CrossRefGoogle Scholar
Cho, J.H., Hu, S., Gracias, D.H., Appl. Phys. Lett. 93, 043505 (2008).CrossRefGoogle Scholar
Randhawa, J.S., Gurbani, S.S., Keung, M.D., Demers, D.P., Leahy-Hoppa, M.R., Gracias, D.H., Appl. Phys. Lett. 96, 191108 (2010).CrossRefGoogle Scholar
Guo, X.Y., Li, H., Ahn, B.Y., Duoss, E.B., Hsia, K.J., Lewis, J.A., Nuzzo, R.G., Proc. Natl. Acad. Sci. U.S.A. 106, 20149 (2009).CrossRefGoogle Scholar
Ionov, L., Soft Matter 7, 6786 (2011).CrossRefGoogle Scholar
Shim, T.S., Kim, S.H., Heo, C.J., Jeon, H.C., Yang, S.M., Angew. Chem. Int. Ed. 51, 1420 (2012).CrossRefGoogle Scholar
Liu, Y.K., Smela, E., Nelson, N.M., Abshire, P., Proc. Ann. Int. Conf. IEEE EMBS 26, 2534 (2004).Google Scholar
Randall, C.L., Kalinin, Y.V., Jamal, M., Manohar, T., Gracias, D.H., Lab Chip 11, 127 (2011).CrossRefGoogle Scholar
Lu, Y.W., Kim, C.J., Appl. Phys. Lett. 89, 164101 (2006).CrossRefGoogle Scholar
Leong, T.G., Randall, C.L., Benson, B.R., Bassik, N., Stern, G.M., Gracias, D.H., Proc. Natl. Acad. Sci. U.S.A. 106, 703 (2009).CrossRefGoogle Scholar
Guo, F., Kim, F., Han, T.H., Shenoy, V.B., Huang, J.X., Hurt, R.H., ACS Nano 5, 8019 (2011).CrossRefGoogle Scholar
Chen, Y., Guo, F., Jachak, A., Kim, S.-P., Datta, D., Liu, J., Kulaots, I., Vaslet, C., Jang, H.D., Huang, J., Kane, A., Shenoy, V.B., Hurt, R.H., Nano Lett. 12, 1996 (2012).CrossRefGoogle Scholar
Kim, K., Lee, Z., Malone, B.D., Chan, K.T., Aleman, B., Regan, W., Gannett, W., Crommie, M.F., Cohen, M.L., Zettl, A., Phys. Rev. B 83 (2011).Google Scholar
Patra, N., Wang, B.Y., Kral, P., Nano Lett. 9, 3766 (2009).CrossRefGoogle Scholar
Prada, E., San-Jose, P., Brey, L., Phys. Rev. Lett. 105, 106802 (2010).CrossRefGoogle Scholar
Rainis, D., Taddei, F., Polini, M., Leon, G., Guinea, F., Fal’ko, V.I., Phys. Rev. B 83, 8 (2011).CrossRefGoogle Scholar
Gellman, S.H., Acc. Chem. Res. 31, 173 (1998).CrossRefGoogle Scholar
Rothemund, P.W.K., Nature 440, 297 (2006).CrossRefGoogle Scholar
He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.D., Nature 452, 198 (2008).CrossRefGoogle Scholar
Landau, L.D., Lifshitz, E.M., Theory of Elasticity, 3rd ed. (Pergamon Press, Oxford, 1986).Google Scholar
Timoshenko, S., J. Opt. Soc. Am. Rev. Sci. Instrum. 11, 233 (1925).CrossRefGoogle Scholar
Klein, C.A., Miller, R.P., J. Appl. Phys. 87, 2265 (2000).CrossRefGoogle Scholar
Hsueh, C.H., J. Appl. Phys. 91, 9652 (2002).CrossRefGoogle Scholar
Nikishkov, G.P., J. Appl. Phys. 94, 5333 (2003).CrossRefGoogle Scholar
Freund, L.B., Suresh, S., Thin Film Materials: Stress, Defect Formation, and Surface Evolution, 1st paperback edition (Cambridge University Press, UK, 2009).Google Scholar
Giannakopoulos, A.E., Blech, I.A., Suresh, S., Acta Mater. 49, 3671 (2001).CrossRefGoogle Scholar
Alben, S., Balakrisnan, B., Smela, E., Nano Lett. 11, 2280 (2011).CrossRefGoogle Scholar
Cho, J.H., Datta, D., Park, S.Y., Shenoy, V.B., Gracias, D.H., Nano Lett. 10, 5098 (2010).CrossRefGoogle Scholar
Moiseeva, E., Senousy, Y.M., McNamara, S., Harnett, C.K., J. Micromech. Microeng. 17, N63 (2007).CrossRefGoogle Scholar
Huang, M.H., Cavallo, F., Liu, F., Lagally, M.G., Nanoscale 3, 96 (2011).CrossRefGoogle Scholar
Kumar, K., Luchnikov, V., Nandan, B., Zakharchenko, S., Ionov, L., Mater. Res. Soc. Symp. Proc. 1272 (2010).Google Scholar
Azam, A., Laflin, K.E., Jamal, M., Fernandes, R., Gracias, D.H., Biomed. Microdevices 13, 51 (2011).CrossRefGoogle Scholar
Zhang, J., Xiao, J.L., Meng, X.H., Monroe, C., Huang, Y.G., Zuo, J.M., Phys. Rev. Lett. 104, 4 (2010).Google Scholar
Mahadevan, L., Rica, S., Science 307, 1740 (2005).CrossRefGoogle Scholar
Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M., Nature 393, 146 (1998).CrossRefGoogle Scholar
Huck, W.T.S., Bowden, N., Onck, P., Pardoen, T., Hutchinson, J.W., Whitesides, G.M., Langmuir 16, 3497 (2000).CrossRefGoogle Scholar
Schweikart, A., Fery, A., Microchim. Acta 165, 249 (2009).CrossRefGoogle Scholar
Kim, P., Abkarian, M., Stone, H.A., Nat. Mater. 10, 952 (2011).CrossRefGoogle Scholar
Bassik, N., Stern, G.M., Gracias, D.H., Appl. Phys. Lett. 95, 91901 (2009).CrossRefGoogle Scholar
Harrington, M.J., Razghandi, K., Ditsch, F., Guiducci, L., Rueggeberg, M., Dunlop, J.W.C., Fratzl, P., Neinhuis, C., Burgert, I., Nat. Commun. 2 (2011).CrossRefGoogle Scholar
Randhawa, J.S., Keung, M.D., Tyagi, P., Gracias, D.H., Adv. Mater. 22, 407 (2010).CrossRefGoogle Scholar
Fernandes, R., Gracias, D.H., Adv. Drug Delivery Rev. (2012), doi:10.1016/j.addr.2012.12.012.Google Scholar
Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C., Science 335, 1201 (2012).CrossRefGoogle Scholar
Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J., Proc. Natl. Acad. Sci. U.S.A. 107, 12441 (2010).CrossRefGoogle Scholar
Harazim, S.M., Xi, W., Schmidt, C.K., Sanchez, S., Schmidt, O.G., J. Mater. Chem. 22, 2878 (2012).CrossRefGoogle Scholar