Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T08:21:33.821Z Has data issue: false hasContentIssue false

Self-Assembly of Organic Nano-Objects into Functional Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

One of the goals of contemporary science is the atomic or molecular design of materials in order to achieve specific properties. There is special interest in imitating with these designed materials the remarkable integrated functionality we see in biology. Soft matter offers a particularly good opportunity to realize these goals because of the vast structural space offered by organic systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lehn, J.-M., Supramolecular Chemistry (VCH, New York, 1995).CrossRefGoogle Scholar
2. Philip, D. and Stoddart, J.F., Angew. Chem., Int. Ed. Engl. 35 (1996) p. 1154.CrossRefGoogle Scholar
3. Atwood, J.L., Davies, J.E.D., MacNicol, D.D., and Vögtle, F., Comprehensive Supramolecular Chemistry (Pergamon Press, New York, 1996).Google Scholar
4. de Gennes, P.-G., The Physics of Liquid Crystals (Oxford University Press, New York, 1975).Google Scholar
5. Stupp, S.I., Son, S., Lin, H.C., and Li, L.S., Science 259 (1993) p. 59.CrossRefGoogle Scholar
6. Stupp, S.I., Son, S., Li, L.S., Lin, H.C., and Keser, M., J. Am. Chem. Soc. 117 (1995) p. 5212.CrossRefGoogle Scholar
7. Mori, S. and Wadati, M.J., J. Phys. Soc. Jpn. 62 (1993) p. 3864.CrossRefGoogle Scholar
8. Abraham, F.F. and Nelson, D.R., Science 249 (1990) p. 393.CrossRefGoogle Scholar
9. Abraham, F.F. and Nelson, D.R., J. Phys. (Paris) 51 (1990) p. 2653.CrossRefGoogle Scholar
10. Abraham, F.F. and Kardar, M., Science 252 (1991) p. 419.CrossRefGoogle Scholar
11. Kantor, Y. and Kremer, K., Phys. Rev. E 48 (1993) p. 2490.CrossRefGoogle Scholar
12. Morse, D.C., Petsche, I.B., Grest, G.S., and Lubensky, T.C., Phys. Rev. A 46 (1992) p. 6745.CrossRefGoogle Scholar
13. LeBonheur, V., PhD thesis, University of Illinois at Urbana-Champaign, 1996, p. 109.Google Scholar
14. Radzilowski, L.H., Wu, J.L., and Stupp, S.I., Macromolecules 26 (1993) p. 879.CrossRefGoogle Scholar
15. Radzilowski, L.H. and Stupp, S.I., Macromolecules 27 (1994) p. 7747.CrossRefGoogle Scholar
16. Radzilowski, L.H., Carragher, B.O., and Stupp, S.I., Macromolecules 30 (1997) p. 2210.CrossRefGoogle Scholar
17. Douy, A. and Gallot, B., Polymer 28 (1987) p. 147.CrossRefGoogle Scholar
18. Li, W., Wang, H., Yu, L., Morkved, T.L., and Jaeger, H.M., Macromolecules 32 (1999) p. 3034.CrossRefGoogle Scholar
19. Saunders, R.S., Cohen, R.E., and Schrock, R.R., Macromolecules 24 (1991) p. 5599.CrossRefGoogle Scholar
20. Marsitzky, D., Brand, T., Geerts, Y., Klapper, M., and Mullen, K., Macromol. Rapid Commun. 19 (1998) p. 385.3.0.CO;2-X>CrossRefGoogle Scholar
21. Halperin, A., Macromolecules 23 (1990) p. 2724.CrossRefGoogle Scholar
22. Raphaël, E. and de Gennes, P.-G., Makromol. Chem., Macromol. Symp. 62 (1992) p. 1.CrossRefGoogle Scholar
23. Schweizer, K.S., Macromolecules 26 (1993) p. 6050.CrossRefGoogle Scholar
24. Semenov, A.N. and Vasilenko, S.V., Sov. Phys. JETP (Engl. Transl.) 63 (1986) p. 70.Google Scholar
25. Semenov, A.N., Mol. Cryst. Liq. Cryst. 209 (1991) p. 191.CrossRefGoogle Scholar
26. Vavasour, J.D. and Whitmore, M.D., Macromolecules 26 (1993) p. 7070.CrossRefGoogle Scholar
27. Williams, D.R. and Fredrickson, G.H., Macromolecules 25 (1992) p. 3561.CrossRefGoogle Scholar
28. DeGrado, W.F., Summa, C.M., Pavone, V., Nastri, F., and Lombardi, A., Annu. Rev. Biochem. 68 (1999) p. 779.CrossRefGoogle Scholar
29. Pralle, M.U., Whitaker, C.M., Braun, P.V., and Stupp, S.I., Macromolecules in press.Google Scholar
30. Tew, G.N., Pralle, M.U., and Stupp, S.I., J. Am. Chem. Soc. 121 (1999) p. 9852.CrossRefGoogle Scholar
31. Zubarev, E.R., Pralle, M.U., Li, L.M., and Stupp, S.I., Science 283 (1999) p. 523.CrossRefGoogle Scholar
32. Stupp, S.I., LeBonheur, V., Walker, K., Li, L.S., Huggins, K., Keser, M., and Amstutz, A., Science 276 (1997) p. 384.CrossRefGoogle Scholar
33. Tew, G.N., Pralle, M.U., and Stupp, S.I., Angew. Chem., Int. Ed. Engl. 39 (2000) p. 517.3.0.CO;2-#>CrossRefGoogle Scholar
34. Gray, G.W. and Goodby, J.W.G., Smectic Liquid Crystals–Textures and Structures (Heyden and Sons, Philadelphia, 1984).Google Scholar
35. Sayar, M. and Stupp, S.I., “Self-Assembly of Rodcoil Molecules into Nanostructures,” presented at Materials Research Society Meeting, Boston, November 1999.Google Scholar
36. Tew, G.N., Li, L.M., and Stupp, S.I., J. Am. Chem. Soc. 120 (1998) p. 5601.CrossRefGoogle Scholar
37. Pralle, M.U., Urayama, K., Tew, G.N., Neher, D., Wegner, G., and Stupp, S.I., Angew. Chem., Int. Ed. Engl. in press.Google Scholar
38. Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J.E., Science 274 (1996) p. 1859.CrossRefGoogle Scholar
39. Lodish, H., Baltimore, D., Berk, A., Zipursky, S.L., Matsudaira, P., and Darnell, J., Molecular Cell Biology (Scientific American, New York, 1995) p. 943.Google Scholar
40. Pennisi, E., Science 279 (1998) p. 176.CrossRefGoogle Scholar
41. Hochachka, P.W., Proc. Natl. Acad. Sci. U.S.A. 96 (1999) p. 12233.CrossRefGoogle Scholar
42. Eftekharzadeh, S. and Stupp, S.I., submitted for publication, 1999.Google Scholar
43. Zubarev, E.R., Pralle, M.U., Sone, E., and Stupp, S.I., submitted for publication, 1999.Google Scholar
44. Elgsaeter, A., Stokke, B.T., Mikkelsen, A., and Branton, D., Science 234 (1986) p. 1217.CrossRefGoogle Scholar