Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T02:06:09.178Z Has data issue: false hasContentIssue false

Self-Assembly of Block Copolymers for Photonic-Bandgap Materials

Published online by Cambridge University Press:  31 March 2011

Get access

Abstract

Self-assembled block copolymer systems with an appropriate molecular weight to produce a length scale that will interact with visible light are an alternative platform material for the fabrication of large-area, well-ordered photonic-bandgap structures at visible and near-IR frequencies.Over the past years, one-, two-, and three-dimensional photonic crystals have been demonstrated with various microdomain structures created through microphase separation of block copolymers. The size and shape of periodic microstructures of block copolymers can be readily tuned by molecular weight, relative composition of the copolymer, and blending with homopolymers or plasticizers.The versatility of photonic crystals based on block copolymers is further increased by incorporating inorganic nanoparticles or liquid-crystalline guest molecules (or using a liquid-crystalline block), or by selective etching of one of the microdomains and backfilling with high-refractive-index materials. This article presents an overview of photonic-bandgap materials enabled by self-assembled block copolymers and discusses the morphology and photonic properties of block-copolymer-based photonic crystals containing nanocomposite additives.We also provide a view of the direction of future research, especially toward novel photonic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Park, C., Yoon, J., and Thomas, E.L., Polymer 44 (2003)p. 6725.CrossRefGoogle Scholar
2Thomas, E.L. and Lescanec, R.L., Philos. Trans. R. Soc. London, Ser. A 348 (1994)p. 149.Google Scholar
3Edrington, A.C., Urbas, A.M., DeRege, P., Chen, C.X., Swager, T.M., Hadjichristidis, N., Xenidou, M., Fetters, L.J., Joannopoulos, J.D., Fink, Y., and Thomas, E.L., Adv. Mater. 13 (2001)p. 421.3.0.CO;2-#>CrossRefGoogle Scholar
4Temelkuran, B., Hart, S.D., Benoit, G., Joannopoulos, J.D., and Fink, Y., Nature 420 (2002)p. 650.CrossRefGoogle Scholar
5Chow, E., Grot, A., Mirkarimi, L.W., Sigalas, M., and Girolami, G., Optics Lett. 29 (2004)p. 1093.CrossRefGoogle Scholar
6Scalora, M., Dowling, J.P., Bowden, C.M., and Bloemer, M.J., Phys. Rev. Lett. 73 (1994)p. 1368.CrossRefGoogle Scholar
7Joannopoulos, J.D., Meade, R.D., and Winn, J.N., Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).Google Scholar
8Noda, S., Tomoda, K., Yamamoto, N., and Chutinan, A., Science 289 (2000)p. 604.CrossRefGoogle Scholar
9Qi, M.H., Lidorikis, E., Rakich, P.T., Johnson, S.G., Joannopoulos, J.D., Ippen, E.P., and Smith, H.I., Nature 429 (2004)p. 538.CrossRefGoogle Scholar
10Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G., and Turberfield, A.J., Nature 404 (2000)p.53.CrossRefGoogle Scholar
11Ullal, C.K., Maldovan, M., Wohlgemuth, M., and Thomas, E.L., J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 20 (2003)p. 948.CrossRefGoogle Scholar
12Holland, B.T., Blanford, C.F., and Stein, A., Science 281 (1998)p. 538.CrossRefGoogle Scholar
13Braun, P.V. and Wiltzius, P., Nature 402 (1999)p. 603.CrossRefGoogle Scholar
14Wijnhoven, J. and Vos, W.L., Science 281 (1998)p. 802.CrossRefGoogle Scholar
15Fink, Y., Urbas, A.M., Bawendi, M.G., Joannopoulos, J.D., and Thomas, E.L., J. Lightwave Technol. 17 (1999)p. 1963.CrossRefGoogle Scholar
16Urbas, A., Fink, Y., and Thomas, E.L., Macromolecules 32 (1999)p. 4748.CrossRefGoogle Scholar
17Urbas, A., Sharp, R., Fink, Y., Thomas, E.L., Xenidou, M., and Fetters, L.J., Adv. Mater. 12 (2000)p. 812.3.0.CO;2-8>CrossRefGoogle Scholar
18Yeh, P., Yariv, H., and Shan, C., J. Opt. Soc. Am. 67 (1977)p. 423.CrossRefGoogle Scholar
19Born, M. and Wolf, E., Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).CrossRefGoogle Scholar
20Deng, T., Chen, C.T., Honeker, C., and Thomas, E.L., Polymer 44 (2003)p. 6549.CrossRefGoogle Scholar
21Yablonovitch, E., Phys. Rev. Lett. 58 (1987)p. 2059.CrossRefGoogle Scholar
22John, S., Phys. Rev. Lett. 58 (1987)p. 2486.CrossRefGoogle Scholar
23Yablonovitch, E. and Gmitter, T.J., Phys. Rev. Lett. 63 (1989)p. 1950.CrossRefGoogle Scholar
24Sozuer, H.S., Haus, J.W., and Inguva, R., Phys. Rev. B 45 (1992)p. 13962.CrossRefGoogle Scholar
25Chan, C.T., Ho, K.M., and Soukoulis, C.M., Europhys. Lett. 16 (1991)p. 563.CrossRefGoogle Scholar
26Urbas, A.M., Maldovan, M., DeRege, P., and Thomas, E.L., Adv. Mater. 14 (2002)p. 1850.CrossRefGoogle Scholar
27Maldovan, M., Urbas, A.M., Yufa, N., Carter, W.C., and Thomas, E.L., Phys. Rev. B 65 165123 (2002).CrossRefGoogle Scholar
28Bockstaller, M., Kolb, R., and Thomas, E.L., Adv. Mater. 13 (2001)p. 1783.3.0.CO;2-X>CrossRefGoogle Scholar
29Bockstaller, M.R. and Thomas, E.L., J. Phys. Chem. B 107 (2003)p. 10017.CrossRefGoogle Scholar
30Bockstaller, M.R. and Thomas, E.L., Phys. Rev. Lett. 93 166106 (2004).CrossRefGoogle Scholar
31Huh, J., Ginzburg, V.V., and Balazs, A.C., Macromolecules 33 (2000)p. 8085.CrossRefGoogle Scholar
32Thompson, R.B., Ginzburg, V.V., Mat-sen, M.W., and Balazs, A.C., Science 292 (2001)p. 2469.CrossRefGoogle Scholar
33Lee, J.Y., Thompson, R.B., Jasnow, D., and Balazs, A.C., Macromolecules 35 (2002)p. 4855.CrossRefGoogle Scholar
34Buxton, G.A., Lee, J.Y., and Balazs, A.C., Macromolecules 36 (2003)p. 9631.CrossRefGoogle Scholar
35Bockstaller, M.R., Lapetnikov, Y., Margel, S., and Thomas, E.L., J. Am. Chem. Soc. 127 (2003)p. 5276.CrossRefGoogle Scholar
36Chiu, J.J., Kim, B.J., Kramer, E.J., and Pine, D.J., J. Am. Chem. Soc. 127 (2005)p. 5036.CrossRefGoogle Scholar
37Bockstaller, M.R., Mickiewicz, R.A., and Thomas, E.L., Adv. Mater. 17 (2005)p. 1331.CrossRefGoogle Scholar
38Osuji, C., Chao, C.Y., Bita, I., Ober, C.K., and Thomas, E.L., Adv. Funct. Mater. 12 (2002)p. 753.CrossRefGoogle Scholar
39Valkama, S., Kosonen, H., Ruokolainen, J., Haatainen, T., Torkkeli, M., Serimaa, R., Brinke, G. Ten, and Ikkala, O., Nature Mater. 3 (2004)p. 872.CrossRefGoogle Scholar
40Urbas, A., “Block Copolymer Photonic Crystals,” PhD Thesis, Massachusetts Institute of Technology (2003).Google Scholar
41Rosa, C. De, Park, C., Lotz, B., Wittmann, J.C., Fetters, L.J., and Thomas, E.L., Macromolecules 33 (2000)p. 4871.CrossRefGoogle Scholar