Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T20:38:57.565Z Has data issue: false hasContentIssue false

Self-assembly of bioinspired and biologically functional materials

Published online by Cambridge University Press:  09 October 2020

E. Thomas Pashuck
Affiliation:
Lehigh University, USA; [email protected]
Ned Seeman
Affiliation:
New York University, USA; [email protected]
Robert Macfarlane
Affiliation:
Massachusetts Institute of Technology, USA; [email protected]
Get access

Abstract

Self-assembly enables hierarchical organization and compartmentalization of matter previously observed only in natural materials. Simple chemical motifs can be used to fabricate structures with diverse range of architectures and properties. The design principles, originally found in nature, are being implemented in self-assembled materials. The examples include high mechanical strength of bones and nacre achieved through hierarchical organic–inorganic organization, and DNA nanotechnology enabled by complementary bonding of DNA molecules. Building materials with controlled architectures from the nanoscale to the macroscale will lead to a combination of properties that will have significant impacts on fields ranging from tissue regeneration to optoelectronics.

Type
Functional Materials and Devices by Self-Assembly
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aida, T., Meijer, E., Stupp, S., Science 335, 813 (2012).CrossRefGoogle Scholar
Krajina, B.A., Proctor, A.C., Schoen, A.P., Spakowitz, A.J., Heilshorn, S.C., Prog. Mater. Sci. 91, 1 (2018).10.1016/j.pmatsci.2017.08.001CrossRefGoogle Scholar
Gabrys, P.A., Zornberg, L.Z., Macfarlane, R.J., Small 15, 1805424 (2019).CrossRefGoogle Scholar
Webber, M.J., Appel, E.A., Meijer, E., Langer, R., Nat. Mater. 15, 13 (2016).CrossRefGoogle Scholar
Sahoo, J.K., VandenBerg, M.A., Webber, M.J., Adv. Drug Deliv. Rev. 127, 185 (2018).10.1016/j.addr.2017.11.005CrossRefGoogle Scholar
Svitkina, T., Cold Spring Harb. Perspect. Biol. 10, a018267 (2018).10.1101/cshperspect.a018267CrossRefGoogle Scholar
Nardone, G., Oliver-De La Cruz, J., Vrbsky, J., Martini, C., Pribyl, J., Skládal, P., Pešl, M., Caluori, G., Pagliari, S., Martino, F., Nat. Commun. 8, 1 (2017).CrossRefGoogle Scholar
Bai, Y., Luo, Q., Liu, J., Chem. Soc. Rev. 45, 2756 (2016).CrossRefGoogle Scholar
Espinosa, H.D., Rim, J.E., Barthelat, F., Buehler, M.J., Prog. Mater. Sci. 54, 1059 (2009).10.1016/j.pmatsci.2009.05.001CrossRefGoogle Scholar
Dunlop, J.W., Fratzl, P., Annu. Rev. Mater. Res. 40, 1 (2010).10.1146/annurev-matsci-070909-104421CrossRefGoogle Scholar
Reznikov, N., Bilton, M., Lari, L., Stevens, M.M., Kröger, R., Science 360, eaa02189 (2018).10.1126/science.aao2189CrossRefGoogle Scholar
Lakshmanan, A., Zhang, S., Hauser, C.A., Trends Biotechnol. 30, 155 (2012).CrossRefGoogle Scholar
Zhang, S., Greenfield, M.A., Mata, A., Palmer, L.C., Bitton, R., Mantei, J.R., Aparicio, C., De La Cruz, M.O., Stupp, S.I., Nat. Mater. 9, 594 (2010).10.1038/nmat2778CrossRefGoogle Scholar
Kang, S.H., Dickey, M.D., MRS Bull. 41, 93 (2016).10.1557/mrs.2016.3CrossRefGoogle Scholar
Seeman, N.C., J. Theor. Biol. 99, 237 (1982).10.1016/0022-5193(82)90002-9CrossRefGoogle Scholar
Chen, J., Seeman, N.C., Nature 350, 631 (1991).CrossRefGoogle Scholar
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C., Nature 394, 539 (1998).10.1038/28998CrossRefGoogle Scholar
Ding, B., Seeman, N.C., Science 314, 1583 (2006).10.1126/science.1131372CrossRefGoogle Scholar
Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C., Nature 461, 74 (2009).CrossRefGoogle Scholar
Rothemund, P.W., Nature 440, 297 (2006).CrossRefGoogle Scholar
Seeman, N.C., Structural DNA Nanotechnology (Cambridge University Press, Cambridge, UK, 2015).10.1017/CBO9781139015516CrossRefGoogle Scholar
Watkins, A.M., Arora, P.S., ACS Chem. Biol. 9, 1747 (2014).CrossRefGoogle Scholar
Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., Yates, J., Cotman, C., Glabe, C., J. Biol. Chem. 267, 546 (1992).Google Scholar
Good, M.C., Zalatan, J.G., Lim, W.A., Science 332, 680 (2011).10.1126/science.1198701CrossRefGoogle Scholar
Simons, K., Sampaio, J.L., Cold Spring Harb. Perspect. Biol. 3, a004697 (2011).CrossRefGoogle Scholar
Shin, Y., Brangwynne, C.P., Science 357 (2017), https://science.sciencemag.org/content/357/6357/eaaf4382.full.pdf.10.1126/science.aaf4382CrossRefGoogle Scholar
Vicente-Manzanares, M., Choi, C.K., Horwitz, A.R., J. Cell Sci. 122, 199 (2009).CrossRefGoogle Scholar
Wenger, M.P., Bozec, L., Horton, M.A., Mesquida, P., Biophys. J. 93, 1255 (2007).10.1529/biophysj.106.103192CrossRefGoogle Scholar
Gosline, J., Guerette, P., Ortlepp, C., Savage, K., J. Exp. Biol. 202, 3295 (1999).Google Scholar
Keten, S., Xu, Z., Ihle, B., Buehler, M.J., Nat. Mater. 9, 359 (2010).10.1038/nmat2704CrossRefGoogle Scholar
Giesa, T., Perry, C.C., Buehler, M.J., Biomacromolecules 17, 427 (2016).10.1021/acs.biomac.5b01246CrossRefGoogle Scholar
Hellmich, C., Katti, D., MRS Bull. 40, 309 (2015).CrossRefGoogle Scholar
Spicer, C.D., Pashuck, E.T., Stevens, M.M., Chem. Rev. 118, 7702 (2018).CrossRefGoogle Scholar
Jiang, Y.-B., Sun, Z., MRS Bull. 44, 167 (2019).10.1557/mrs.2019.44CrossRefGoogle Scholar
Erdelyi, M., Gogoll, A., Synthesis 2002, 1592 (2002).Google Scholar
Williams, B.A., Diehnelt, C.W., Belcher, P., Greving, M., Woodbury, N.W., Johnston, S.A., Chaput, J.C., J. Am. Chem. Soc. 131, 17233 (2009).CrossRefGoogle Scholar
Pashuck, E.T., Duchet, B.J., Hansel, C.S., Maynard, S.A., Chow, L.W., Stevens, M.M., ACS Nano 10, 11096 (2016).CrossRefGoogle Scholar
Singh, V., Snigdha, K., Singh, C., Sinha, N., Thakur, A.K., Soft Matter 11, 5353 (2015).CrossRefGoogle Scholar
Sun, L., Zheng, C., Webster, T.J., Int. J. Nanomed. 12, 73 (2017).CrossRefGoogle Scholar
Chou, P.Y., Fasman, G.D., Biochemistry 13, 222 (1974).CrossRefGoogle Scholar
Yokoi, H., Kinoshita, T., Zhang, S., Proc. Natl. Acad. Sci. U.S.A. 102, 8414 (2005).10.1073/pnas.0407843102CrossRefGoogle Scholar
Hartgerink, J.D., Beniash, E., Stupp, S.I., Science 294, 1684 (2001).CrossRefGoogle Scholar
Paramonov, S.E., Jun, H.-W., Hartgerink, J.D., J. Am. Chem. Soc. 128, 7291 (2006).CrossRefGoogle Scholar
Pashuck, E.T., Cui, H., Stupp, S.I., J. Am. Chem. Soc. 132, 6041 (2010).CrossRefGoogle Scholar
Nguyen, Q.T., Hwang, Y., Chen, A.C., Varghese, S., Sah, R.L., Biomaterials 33, 6682 (2012).CrossRefGoogle Scholar
Chen, J.W.E., Pedron, S., Harley, B.A., Macromol. Biosci. 17, 1700018 (2017).10.1002/mabi.201700018CrossRefGoogle Scholar
Yan, C., Pochan, D.J., Chem. Soc. Rev. 39, 3528 (2010).10.1039/b919449pCrossRefGoogle Scholar
Koch, F., Müller, M., König, F., Meyer, N., Gattlen, J., Pieles, U., Peters, K., Kreikemeyer, B., Mathes, S., Saxer, S., R. Soc. Open Sci. 5, 171562 (2018).10.1098/rsos.171562CrossRefGoogle Scholar
Notbohm, J., Lesman, A., Tirrell, D.A., Integr. Biol. 7, 1186 (2015).10.1039/C5IB00013KCrossRefGoogle Scholar
Sun, J.-Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z., Nature 489, 133 (2012).CrossRefGoogle Scholar
Clarke, D.E., Pashuck, E.T., Bertazzo, S., Weaver, J.V., Stevens, M.M., J. Am. Chem. Soc. 139, 7250 (2017).CrossRefGoogle Scholar
Taylor, D.L., in het Panhuis, M., Adv. Mater. 28, 9060 (2016).10.1002/adma.201601613CrossRefGoogle Scholar
Haines-Butterick, L., Rajagopal, K., Branco, M., Salick, D., Rughani, R., Pilarz, M., Lamm, M.S., Pochan, D.J., Schneider, J.P., Proc. Natl. Acad. Sci. U.S.A. 104, 7791 (2007).CrossRefGoogle Scholar
Aguado, B.A., Mulyasasmita, W., Su, J., Lampe, K.J., Heilshorn, S.C., Tissue Eng. Part A 18, 806 (2012).10.1089/ten.tea.2011.0391CrossRefGoogle Scholar
Woolfson, D.N., Pept. Sci. 94, 118 (2010).10.1002/bip.21345CrossRefGoogle Scholar
Fletcher, J.M., Science 340, 595 (2013).CrossRefGoogle Scholar
Gu, G.X., Su, I., Sharma, S., Voros, J.L., Qin, Z., Buehler, M.J., J. Biomech. Eng. 138 (2016).Google Scholar
Hudalla, G.A., Sun, T., Gasiorowski, J.Z., Han, H., Tian, Y.F., Chong, A.S., Collier, J.H., Nat. Mater. 13, 829 (2014).10.1038/nmat3998CrossRefGoogle Scholar
Freeman, R., Han, M., Álvarez, Z., Lewis, J.A., Wester, J.R., Stephanopoulos, N., McClendon, M.T., Lynsky, C., Godbe, J.M., Sangji, H., Science 362, 808 (2018).CrossRefGoogle Scholar
Dong, Z., Wang, Y., Yin, Y., Liu, J., Curr. Opin. Colloid Interface Sci. 16, 451 (2011).CrossRefGoogle Scholar
Sommerdijk, N.A., Cölfen, H., MRS Bull. 35, 116 (2010).CrossRefGoogle Scholar
Rawlings, A.E., Bramble, J.P., Staniland, S.S., Soft Matter 8, 6675 (2012).10.1039/c2sm25385bCrossRefGoogle Scholar
Boles, M.A., Engel, M., Talapin, D.V., Chem. Rev. 116, 11220 (2016).CrossRefGoogle Scholar
Genix, A.-C., Oberdisse, J., Soft Matter 14, 5161 (2018).CrossRefGoogle Scholar
Goerlitzer, E.S., Klupp Taylor, R.N., Vogel, N., Adv. Mater. 30, 1706654 (2018).CrossRefGoogle Scholar
Macfarlane, R.J., Lee, B., Jones, M.R., Harris, N., Schatz, G.C., Mirkin, C.A., Science 334, 204 (2011).CrossRefGoogle Scholar
Macfarlane, R.J., Jones, M.R., Lee, B., Auyeung, E., Mirkin, C.A., Science 341, 1222 (2013).CrossRefGoogle Scholar
Auyeung, E., Li, T.I., Senesi, A.J., Schmucker, A.L., Pals, B.C., de La Cruz, M.O., Mirkin, C.A., Nature 505, 73 (2014).10.1038/nature12739CrossRefGoogle Scholar
Lewis, D.J., Zornberg, L.Z., Carter, D.J., Macfarlane, R.J., Nat. Mater. 19, 719 (2020).CrossRefGoogle Scholar
Le, J.D., Pinto, Y., Seeman, N.C., Musier-Forsyth, K., Taton, T.A., Kiehl, R.A., Nano Lett. 4, 2343 (2004).CrossRefGoogle Scholar
Liu, W., Tagawa, M., Xin, H.L., Wang, T., Emamy, H., Li, H., Yager, K.G., Starr, F.W., Tkachenko, A.V., Gang, O., Science 351, 582 (2016).CrossRefGoogle Scholar
Tian, Y., Zhang, Y., Wang, T., Xin, H.L., Li, H., Gang, O., Nat. Mater. 15, 654 (2016).CrossRefGoogle Scholar
Chen, C.L., Rosi, N.L., Angew. Chem. Int. Ed. 49, 1924 (2010).CrossRefGoogle Scholar
Jones, M.R., Osberg, K.D., Macfarlane, R.J., Langille, M.R., Mirkin, C.A., Chem. Rev. 111, 3736 (2011).CrossRefGoogle Scholar
Walsh, T.R., Knecht, M.R., Chem. Rev. 117, 12641 (2017).10.1021/acs.chemrev.7b00139CrossRefGoogle Scholar
Shemetov, A.A., Nabiev, I., Sukhanova, A., ACS Nano 6, 4585 (2012).CrossRefGoogle Scholar
Mout, R., Yesilbag Tonga, G., Wang, L.-S., Ray, M., Roy, T., Rotello, V.M., ACS Nano 11, 3456 (2017).CrossRefGoogle Scholar
Kostiainen, M.A., Hiekkataipale, P., Laiho, A., Lemieux, V., Seitsonen, J., Ruokolainen, J., Ceci, P., Nat. Nanotechnol. 8, 52 (2013).CrossRefGoogle Scholar
Auyeung, E., Macfarlane, R.J., Choi, C.H.J., Cutler, J.I., Mirkin, C.A., Adv. Mater. 24, 5181 (2012).CrossRefGoogle Scholar
Zhang, J., Santos, P.J., Gabrys, P.A., Lee, S., Liu, C., Macfarlane, R.J., J. Am. Chem. Soc. 138, 16228 (2016).10.1021/jacs.6b11052CrossRefGoogle Scholar
Santos, P.J., Cao, Z., Zhang, J., Alexander-Katz, A., Macfarlane, R.J., J. Am. Chem. Soc. 141, 14624 (2019).CrossRefGoogle Scholar
Wang, Y., Santos, P.J., Kubiak, J.M., Guo, X., Lee, M.S., Macfarlane, R.J., J. Am. Chem. Soc. 141, 13234 (2019).CrossRefGoogle Scholar
Abdilla, A., Dolinski, N.D., de Roos, P., Ren, J.M., van der Woude, E., Seo, S.E., Zayas, M.S., Lawrence, J., Read de Alaniz, J., Hawker, C.J., J. Am. Chem. Soc. 142, 1667 (2020).10.1021/jacs.9b10156CrossRefGoogle Scholar
Wang, J., Cheng, Q., Tang, Z., Chem. Soc. Rev. 41, 1111 (2012).10.1039/C1CS15106ACrossRefGoogle Scholar
Zhou, X., Guo, B., Zhang, L., Hu, G.-H., Chem. Soc. Rev. 46, 6301 (2017).10.1039/C7CS00276ACrossRefGoogle Scholar
Watanabe, K., Miwa, E., Asai, F., Seki, T., Urayama, K., Nakatani, T., Fujinami, S., Hoshino, T., Takata, M., Liu, C., ACS Mater. Lett. 2, 325 (2020).CrossRefGoogle Scholar
Ball, P., Sci. Am. 306, 74 (2012).CrossRefGoogle Scholar
Lv, J., Ding, D., Yang, X., Hou, K., Miao, X., Wang, D., Kou, B., Huang, L., Tang, Z., Angew. Chem. Int. Ed. 131, 7865 (2019).CrossRefGoogle Scholar