Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:56:45.744Z Has data issue: false hasContentIssue false

Selective laser sintering of functionally graded tissue scaffolds

Published online by Cambridge University Press:  14 December 2011

C.K. Chua
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University; [email protected]
K.F. Leong
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University; [email protected]
N. Sudarmadji
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University; [email protected]
M.J.J. Liu
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University; [email protected]
S.M. Chou
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University; [email protected]
Get access

Abstract

Since the emergence of tissue engineering (TE), numerous researchers, particularly in the areas of materials, biological science, and engineering, have aimed to provide viable substitutes for the repair and regeneration of musculoskeletal and organ tissues. Bone TE has been extensively explored to mimic the anatomical geometry of bone with varied pore size distribution and varying mechanical properties in a radial direction (a functional gradient). This TE approach was explored to promote faster functional recovery of defective bones due to congenital, traumatic, or degenerative reasons. The present study integrated an appropriate additive manufacturing or rapid prototyping technique with automated computer-aided design models. This process was applied to the manufacture of a functionally graded scaffold (FGS). The FGS system takes into consideration both microscale anatomical geometries and mechanical properties of the native bone via an established porosity-stiffness relationship. Experimental verification of the FGS model was carried out by the fabrication of a femur bone segment using a selective laser sintering system. The physical femur model demonstrated good replication of the FGS structure that was generated. Future work aims to implement the FGS system for other musculoskeletal and organ tissues and integrate the current work with the authors’ in-house developed “computer aided system for tissue scaffolds” or CASTS system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Langer, R., Vacanti, J.P., Science 260, 920 (1993).Google Scholar
2.Risbud, M., Biogerontology 2, 117 (2001).Google Scholar
3.Saltzman, W.M., Tissue Engineering: Engineering Principles for the Design of Replacement Organs and Tissues (Oxford University Press, NY, 2004).Google Scholar
4.Shier, D., Butler, J., Lewis, R., Hole’s Essentials of Human Anatomy and Physiology (McGraw-Hill, NY, 2006).Google Scholar
5.Griffith, L.G., Swartz, M.A., Nat. Rev. Mol. Cell Biol. 7, 211 (2006).Google Scholar
6.Vang, P., Advantages and Disadvantages Between Allograft Versus Autograft in Anterior Cruciate Ligament Replacement. Master of physician assistant thesis. (Wichita State University, Wichita, 2006).Google Scholar
7.Butler, D.L., Goldstein, S.A., Guldberg, R.E., Guo, X.E., Kamm, R., Laurencin, C.T., McIntire, L.V., Mow, V.C., Nerem, R.M., Sah, R.L., Soslowsky, L.J., Spilker, R.L., Tranquillo, R.T., Tissue Engineering Part B: Reviews 15, 477 (2009).CrossRefGoogle Scholar
8.Lalan, S., Pomerantseva, I., Vacanti, J.P., World J. Surg. 25, 1458 (2001).Google Scholar
9.Lysaght, M.J., Tissue Engineering 1, 221 (1995).Google Scholar
10.Yeong, W.Y., Chua, C.K., Leong, K.F., Chandrasekaran, M., Trends in Biotechnol. 22, 643 (2004).Google Scholar
11.Sterodimas, A., de Faria, J., Correa, W.E., Pitanguy, I., Journal of Plastic, Reconstructive & Aesthetic Surgery 62, 447 (2009).Google Scholar
12.Ma, P.X., Materials Today 7, 30(2004).Google Scholar
13.Bartolo, P.J., Chua, C.K., Almeida, H.A., Chou, S.M., Lim, A.S.C., Virtual and Physical Prototyping 4, 203 (2009).Google Scholar
14.Leong, K.F., Cheah, C.M., Chua, C.K., Biomaterials 24, 2363 (2003).Google Scholar
15.Yang, S.F., Leong, K.F., Du, Z.H., Chua, C.K., Tissue Engineering 8, 1 (2002).Google Scholar
16.Yang, S.F., Leong, K.F., Du, Z.H., Chua, C.K., Tissue Engineering 7, 679 (2001).CrossRefGoogle ScholarPubMed
17.Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Cheang, P., Abu Bakar, M.S., Cha, S.W., Biomaterials 24, 3115 (2003).Google Scholar
18.Too, M.H., Leong, K.F., Chua, C.K., Du, Z.H., Yang, S.F., Cheah, C.M., Ho, S.L., Inter. J. Adv. Manuf. Technol. 19, 217 (2002).Google Scholar
19.Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Gui, W.S., Tan, W.S., Wiria, F.E., Bio-Medical Materials and Engineering 15, 113 (2005).Google Scholar
20.Lam, C.X.F., Mo, X.M., Teoh, S.H., Hutmacher, D.W., Mater. Sci. Eng. C-Biomimetic and Supramolecular Syst. 20, 49 (2002).Google Scholar
21.Simpson, R.L., Wiria, F.E., Amis, A.A., Chua, C.K., Leong, K.F., Hansen, U.N., Chandrasekaran, M., Lee, M.W., J. Biomed. Mater. Res. Part B: Appl. Biomat. 84B, 17 (2008).Google Scholar
22.Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., KellomÃki, M., Annals of Medicine 40, 268 (2008).Google Scholar
23.Naing, M.W., Chua, C.K., Leong, K.F., Wang, Y., Rapid Prototyping Journal 11, 249 (2005).Google Scholar
24.Leong, K.F., Chua, C.K., Sudarmadji, N., Yeong, W.Y., Journal of the Mechanical Behavior of Biomedical Materials 1, 140 (2008).Google Scholar
25.Cheah, C.M., Chua, C.K., Leong, K.F., Cheong, C.H., Naing, M.W., Tissue Engineering 10, 595 (2004).CrossRefGoogle ScholarPubMed
26.Hollister, S.J., Advanced Materials 21, 3330 (2009).Google Scholar
27.Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L., Applied Surface Science 255, 529 (2008).Google Scholar
28.Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L., Li, Z.Y., Lu, W.W., Acta Biomaterialia 6, 4495 (2010).Google Scholar
29.Duan, B., Cheung, W.L., Wang, M., Biofabrication 3, 1 (2011).Google Scholar
30.Lee, K.-W., Wang, S., Dadsetan, M., Yaszemski, M.J., Lu, L., Biomacromolecules 11, 682 (2010).CrossRefGoogle Scholar
31.Shuai, C., Gao, C., Nie, Y., Hu, H., Zhou, Y., Peng, S., Nanotechnology 22, 285703 (2001).Google Scholar
32.Comesaña, R., Lusquiños, F., del Val, J., López-Álvarez, M., Quintero, F., Riveiro, A., Boutinguiza, M., de Carlos, A., Jones, J.R., Hill, R.G., Pou, J., Acta Biomaterialia 7, 3476 (2011).CrossRefGoogle Scholar
33.Baino, F., Vitale-Brovarone, C., Journal of Biomedical Materials Research Part A 97A, 514 (2011).Google Scholar
34.Klein, T.J., Malda, J., Sah, R.L., Hutmacher, D.W., Tissue Engineering Part B: Reviews 15, 143 (2009).Google Scholar
35.Singh, M., Berkland, C., Detamore, M.S., Tissue Engineering Part B: Reviews 14, 341 (2008).Google Scholar
36.Zein, I., Hutmacher, D.W., Tan, K.C., Teoh, S.H., Biomaterials 23, 1169 (2002).Google Scholar
37.Kalita, S.J., Bose, S., Bandyopadhyay, A., Hosick, H.L., Materials Science and Engineering C 23, 611 (2003).Google Scholar
38.Liu, L., Xiong, Z., Yan, Y.N., Zhang, R.J., Wang, X.H., Jin, L., Journal of Biomedical Materials Research Part B-Applied Biomaterials 88B, 254 (2009).Google Scholar
39.Ozkan, S., Kalyon, D.M., Yu, X., Journal of Biomedical Materials Research Part A 92A, 1007 (2010).Google Scholar
40.Sobral, J.M., Caridade, S.G., Sousa, R.A., Mano, J.F., Reis, R.L., Acta Biomaterialia 7, 1009 (2011).CrossRefGoogle Scholar
41.Tan, J.Y., Chua, C.K., Leong, K.F., 4th International Conference on Advanced Research in Virtual and Rapid Prototyping (Leiria, Portugal, 2009), pp. 5157.Google Scholar
42.Yeong, W.Y., Chua, C.K., Leong, K.F., Chandrasekaran, M., Lee, M.W., Rapid Prototyping Journal 12, 229 (2006).Google Scholar
43.Sherwood, J.K., Riley, S.L., Palazzolo, R., Brown, S.C., Monkhouse, D.C., Coates, M., Griffith, L.G., Landeen, L.K., Ratcliffe, A., Biomaterials 23, 4739 (2002).CrossRefGoogle Scholar
44.SalmoriaI, G.V., Ahrens, C.H., KlaussI, P., PaggiI, R.A., OliveiraI, R.G., Lago, A. II, Materials Research 10, 211 (2007).Google Scholar
45.Wiria, F.E., Leong, K.F., Chua, C.K., Rapid Prototyping Journal 16, 400 (2009).CrossRefGoogle Scholar
46.Chua, C.K., Leong, K.F., Cheah, C.M., Chua, S.W., International Journal of Advanced Manufacturing Technology 21, 302 (2003).Google Scholar
47.Wettergreen, M.A., Bucklen, B.S., Starly, B., Yuksel, E., Sun, W., Liebschner, M.A.K., Computer-Aided Design 37, 1141 (2005).Google Scholar
48.Bucklen, B., Wettergreen, M., Yuksel, E., Liebschner, M., Virtual and Physical Prototyping 3, 13 (2008).Google Scholar
49.Naing, M.W., PhD thesis, Nanyang Technological University, Singapore (2005), p. 207.Google Scholar
50.Chua, C.K., Leong, K.F., Cheah, C.M., Chua, S.W., International Journal of Advanced Manufacturing Technology 21, 291 (2003).Google Scholar
51.Wettergreen, M., Bucklen, B., Sun, W., Liebschner, M., Annals of Biomedical Engineering 33, 1333 (2005).Google Scholar
52.Hollister, S.J., Maddox, R.D., Taboas, J.M., Biomaterials 23, 4095 (2002).Google Scholar
53.Adachi, T., Osako, Y., Tanaka, M., Hojo, M., Hollister, S.J., Biomaterials 27, 3964 (2006).Google Scholar
54.Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W., Computer-Aided Design 37, 339 (2005).Google Scholar
55.Starly, B., Lau, W., Bradbury, T., Sun, W., Computer-Aided Design 38, 115 (2006).Google Scholar
56.Lian, Q., Li, D.-C., Tang, Y.-P., Zhang, Y.-R., Computer-Aided Design 38, 507 (2006).Google Scholar
57.Cai, S.Y., Xi, J.T., Computer-Aided Design 40, 1040 (2008).Google Scholar
58.Khoda, A.K.M.B., Ozbolat, I.T., Koc, B., Journal of Biomechanical Engineering 133, 011001 (2011).Google Scholar
59.Sudarmadji, N., PhD thesis, Development of Functionally Graded Biomaterial Scaffolds Using Selective Laser Sintering (Nanyang Technological University, Singapore, 2010), p. 154.Google Scholar
60.Freeman, J.W., Rylander, M.N., Current Bioactive Compounds 5, 185 (2009).Google Scholar
61.Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T., Acta Biomaterialia 7, 530 (2011).Google Scholar
62.Weisstein, E.W., Steinmetz Solid. In MathWorld–A Wolfram Web Resource (2009).Google Scholar
63.Leong, K.F., Chua, C.K., Gui, W.S., Verani, C.T., International Journal of Advanced Manufacturing Technology 31, 483 (2006).Google Scholar
64.Wiria, F.E., Leong, K.F., Chua, C.K., Liu, Y., Acta Biomaterialia 3, 1 (2007).Google Scholar
65.Wiria, F.E., Chua, C.K., Leong, K.F., Quah, Z.Y., Chandrasekaran, M., Lee, M.W., Journal of Materials Science-Materials in Medicine 19, 989 (2008).CrossRefGoogle Scholar
66.Kaptoge, S., Dalzell, N., Folkerd, E., Doody, D., Khaw, K.T., Beck, T.J., Loveridge, N., Mawer, E.B., Berry, J.L., Shearer, M.J., Dowsett, M., Reeve, J., Journal of Clinical Endocrinology and Metabolism 92, 304 (2007).Google Scholar
67.Cullinane, D.M., Einhorn, T.A., in Principles of bone biology, Bilezikian, J.P., Raisz, L.G., Rodan, G.A., Eds. (Academic Press, San Diego, 2002), pp. 1732.Google Scholar
68.Sarmiento, A., Burkhalter, W.E., Latta, L.L., International Orthopaedics 27, 26 (2003).Google Scholar
69.Mohtadi, N., Journal of Bone and Joint Surgery-American Volume 87A, 1167 (2005).Google Scholar
70.Werner, J., Linner-Krcmar, B., Friess, W., Greil, P., Biomaterials 23, 4285 (2002).Google Scholar
71.Vaz, L., Lopes, A.B., Almeida, M., Journal of Materials Science: Materials in Medicine 10, 239 (1999).Google Scholar
72.Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S., Biomaterials 22, 1365 (2001).Google Scholar
73.Oh, S.H., Park, I.K., Kim, J.M., Lee, J.H., Biomaterials 28, 1664 (2007).Google Scholar
74.Woodfield, T.B.F., Malda, J., de Wijn, J., Peters, F., Riesle, J., van Blitterswijk, C.A., Biomaterials 25, 4149 (2004).CrossRefGoogle Scholar
75.Woodfield, T.B.F., van Blitterswijk, C.A., Riesle, J., de Wijn, J., Sims, T.J., Hollander, A.P., Tissue Engineering 11, 1297 (2005).Google Scholar