Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T22:23:31.663Z Has data issue: false hasContentIssue false

Selective laser sintering and its application in biomedical engineering

Published online by Cambridge University Press:  14 December 2011

Bin Duan
Affiliation:
Department of Biomedical Engineering, Cornell University; [email protected]
Min Wang
Affiliation:
Department of Mechanical Engineering, University of Hong Kong; [email protected]
Get access

Abstract

Rapid prototyping (RP) technologies, which are based on computer-aided design and computer-aided manufacturing, are widely employed in traditional industries. They are capable of achieving extensive and detailed control over the architecture of objects to be formed and therefore are increasingly used in the biomedical engineering field. Selective laser sintering (SLS), a versatile RP technique, uses a laser beam to selectively sinter powdered materials to form three-dimensional objects according to designs that can be based on data obtained from computer-based medical imaging technologies. In this article relating to biomedical applications, the principle, materials, machine modification, and parameter optimization for SLS are reviewed. Biomedical applications of SLS, especially in the fabrication of tissue engineering scaffolds and drug/biomolecule delivery vehicles, are presented and discussed. SLS exhibits great potential for many applications in biomedical engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Leong, K.F., Cheah, C.M., Chua, C.K., Biomaterials 24, 2363 (2003).CrossRefGoogle Scholar
2.Yang, S.F., Leong, K.F., Du, Z.H., Chua, C.K., Tissue Eng. 8, 1 (2002).Google Scholar
3.Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomaki, M., Ann. Med. 40, 268 (2008).CrossRefGoogle Scholar
4.Hollister, S.J., Adv. Mater. 21, 3330 (2009).Google Scholar
5.Lopez-Heredia, M.A., Sohier, J., Gaillard, C., Quillard, S., Dorget, M., Layrolle, P., Biomaterials 29, 2608 (2008).Google Scholar
6.Xu, W., Wang, X.H., Yan, Y.N., Zhang, R.J., J. Bioact. Compat. Polym. 23, 103 (2008).Google Scholar
7.Woodfield, T.B.F., Guggenheim, M., von Rechenberg, B., Riesle, J., van Blitterswijk, C.A., Wedler, V., Cell Proliferat. 42, 485 (2009).Google Scholar
8.Zhou, W.Y., Lee, S.H., Wang, M., Cheung, W.L., Ip, W.Y., J. Mater. Sci.-Mater. Med. 19, 2535 (2008).Google Scholar
9.Wiria, F.E., Sudarmadji, N., Leong, K.F., Chua, C.K., Chng, E.W., Chan, C.C., Rapid Prototyping J. 16, 90 (2010).Google Scholar
10.Antonov, E.N., Bagratashvili, V.N., Howdle, S.M., Konovalov, A.N., Popov, V.K., Panchenko, V.Y., Laser Phys. 16, 774 (2006).CrossRefGoogle Scholar
11.Bukharova, T.B., Antonov, E.N., Popov, V.K., Fatkhudinov, T.K., Popova, A.V., Volkov, A.V., Bochkova, S.A., Bagratashvili, V.N., Gol’dshtein, D., Bull. Exp. Biol. Med. 149, 148 (2010).CrossRefGoogle Scholar
12.Pham, D.T., Dimov, S., Lacan, F., Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 213, 435 (1999).Google Scholar
13.Savalani, M.M., Hao, L., Harris, R.A., Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 220, 171 (2006).CrossRefGoogle Scholar
14.Tolochko, N.K., Savich, V.V., Laoui, T., Froyen, L., Onofrio, G., Signorelli, E., Titov, V.I., Proc. Inst. Mech. Eng. Pt. L-J. Mater. Des. Appl. 216, 267 (2002).Google Scholar
15.Shishkovsky, I.V., Volova, L.T., Kuznetsov, M.V., Morozov, Y.G., Parkin, I.P., J. Mater. Chem. 18, 1309 (2008).CrossRefGoogle Scholar
16.Comesana, R., Lusquinos, F., del Val, J., Malot, T., Lopez-Alvarez, M., Riveiro, A., Quintero, F., Boutinguiza, M., Aubry, P., De Carlos, A., Pou, J., J. Eur. Ceram. Soc. 31, 29 (2011).CrossRefGoogle Scholar
17.Shuai, C., Gao, C., Nie, Y., Hu, H., Zhou, Y., Peng, S., Nanotechnology 22, 285703 (2011).Google Scholar
18.Chung, H., Das, S.P., Mater. Sci. Eng., A 437, 226 (2006).Google Scholar
19.Salmoria, G., Klauss, P., Paggi, R.A., Kanis, L.A., Lago, A., Polym. Testing 28, 648 (2009).CrossRefGoogle Scholar
20.Hao, L., Savalani, M.M., Zhang, Y., Tanner, K.E., Harris, R.A., Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 220, 521 (2006).CrossRefGoogle Scholar
21.Wiria, F.E., Leong, K.F., Chua, C.K., Liu, Y., Acta Biomater. 3, 1 (2007).Google Scholar
22.Partee, B., Hollister, S.J., Das, S., J. Manuf. Sci. Eng. 128, 531 (2006).CrossRefGoogle Scholar
23.Eshraghi, S., Das, S.. Acta Biomater. 6, 2467 (2010).Google Scholar
24.Duan, B., Wang, M., Cheung, W.L., Biofabrication 3, 015001 (2011).Google Scholar
25.Duan, B., Wang, M., J. R. Soc. Interface 7, S615 (2010).CrossRefGoogle Scholar
26.Langer, R., Vacanti, J.P., Science 260, 920 (1993).CrossRefGoogle Scholar
27.Hutmacher, D.W., Cool, S., J. Cell. Mol. Med. 11, 654 (2007).Google Scholar
28.Yeong, W.Y., Chua, C.K., Leong, K.F., Chandrasekaran, M., Trends Biotechnol. 22, 643 (2004).CrossRefGoogle Scholar
29.Rimell, J.T., Marquis, P.M., J. Biomed. Mater. Res. 53, 414 (2000).Google Scholar
30.Schmidt, M., Pohle, D., Rechtenwald, T., CIRP Ann. Manuf. Technol. 56, 205 (2007).Google Scholar
31.Hao, L., Savalani, M.M., Zhang, Y., Tanner, K.E., Harris, R.A., Proc. Inst. Mech. Eng. Pt. L-J. Mater. Des. Appl. 220, 125 (2006).Google Scholar
32.Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Cheang, P., Abu Bakar, M.S., Cha, S.W., Biomaterials 24, 3115 (2003).Google Scholar
33.Zhang, Y., Hao, L., Savalani, M.M., Harris, R.A., Di Silvio, L., Tanner, K.E., J. Biomed. Mater. Res. Part A 91A, 1018 (2009).Google Scholar
34.Tan, K.H., Chua, C.K., Leong, K.F., Naing, M.W., Cheah, C.M., Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 219, 183 (2005).CrossRefGoogle Scholar
35.Woodruff, M.A., Hutmacher, D.W., Prog. Polym. Sci. 35, 1217 (2010).Google Scholar
36.Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., Das, S., Biomaterials 26, 4817 (2005).CrossRefGoogle Scholar
37.Ciardelli, G., Chiono, V., Vozzi, G., Pracella, M., Ahluwalia, A., Barbani, N., Cristallini, C., Giusti, P., Biomacromolecules 6, 1961 (2005).Google Scholar
38.Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Gui, W.S., Tan, W.S., Wiria, F.E., Bio-Med. Mater. Eng. 5, 113 (2005).Google Scholar
39.Simpson, R.L., Wiria, F.E., Amis, A.A., Chua, C.K., Leong, K.F., Hansen, U.N., Chandraselkaran, M., Lee, M.W., J. Biomed. Mater. Res. Part B 84B, 17 (2008).Google Scholar
40.Wiria, F.E., Chua, C.K., Leong, K.F., Quah, Z.Y., Chandrasekaran, M., Lee, W., J. Mater. Sci.-Mater. Med. 19, 989 (2008).Google Scholar
41.Li, J.J., Dou, Y., Yang, J., Yin, Y.J., Zhang, H., Yao, F., Wang, H.B., Yao, K.D., Mater. Sci. Eng., C 29, 1207 (2009).Google Scholar
42.Heo, S.J., Kim, S.E., Wei, J., Hyun, Y.T., Yun, H.S., Kim, D.H., Shin, J.W., J. Biomed. Mater. Res. Part A 89A, 108 (2009).Google Scholar
43.Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L., Li, Z.Y., Lu, W.W., Acta Biomater. 6, 4495 (2010).Google Scholar
44.Duan, B., Wang, M., Li, Z.Y., Chan, W.C., Lu, W.W., Front. Mater. Sci. 5, 57 (2011).CrossRefGoogle Scholar
45.Liu, J., Zhang, B., Yan, C.Z., Shi, Y.S., Rapid Prototyping J. 16, 138 (2010).CrossRefGoogle Scholar
46.Yeong, W.Y., Sudarmadji, N., Yu, H.Y., Chua, C.K., Leong, K.F., Venkatraman, S.S., Boey, Y.C.F., Tan, L.P., Acta Biomater. 6, 2028 (2010).CrossRefGoogle Scholar
47.Huang, H., Oizumi, S., Kojima, N., Niino, T., Sakai, Y., Biomaterials 28, 3815 (2007).CrossRefGoogle Scholar
48.Leong, K.F., Phua, K.K.S., Chua, C.K., Du, Z.H., Teo, K.O.M., Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 215, 191 (2001).Google Scholar
49.Cheah, C.M., Leong, K.F., Chua, C.K., Low, K.H., Quek, H.S., Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 216, 369 (2002).Google Scholar
50.Leong, K.F., Wiria, F.E., Chua, C.K., Li, S.H., Bio-Med. Mater. Eng. 17, 147 (2007).Google Scholar
51.Salmoria, C.V., Klauss, P., Paggi, R.A., Souza, M., Kanis, L.A., Zepon, K.M., Innovative Developments in Design and Manufacturing: Advanced Research in Virtual and Rapid Prototyping (CRC Press, 2010), p. 229.Google Scholar
52.Duan, B., Wang, M., Polym. Degrad. Stabil. 95, 1655 (2010).Google Scholar
53.Antonov, E.N., Bagratashvili, V.N., Whitaker, M.J., Barry, J.J.A., Shakesheff, K.M., Konovalov, A.N., Popov, V.K., Howdle, S.M., Adv. Mater. 17, 327 (2005).Google Scholar
54.Wanibuchi, M., Ohtaki, M., Fukushima, T., Friedman, A.H., Houkin, K., Acta Neurochir. 152, 1055 (2010).Google Scholar
55.Silva, D.N., De Oliveira, M.G., Meurer, E., Meurer, M.I., Da Silva, J.V.L., Santa-Barbara, A., J. Cranio-Maxillofac. Surg. 36, 443 (2008).Google Scholar
56.Ibrahim, D., Broilo, T.L., Heitz, C., de Oliveira, M.G., de Oliveira, H.W., Nobre, S.M.W., Dos Santos, J.H.G., Silva, D.N., J. Cranio-Maxillofac. Surg. 37, 167 (2009).Google Scholar
57.Wu, G.F., Zhou, B., Bi, Y.P., Zhao, Y.M., J. Prosthet. Dent. 100, 56 (2008).Google Scholar
58.Montgomery, J.T., Vaughan, M.R., Crawford, R.H., Rapid Prototyping J. 16, 194 (2010).Google Scholar
59.Faustini, M.C., Neptune, R.R., Crawford, R.H., Stanhope, S.J., IEEE Trans. Biomed. Eng. 55, 784 (2008).Google Scholar
60.Pallari, J.H.P., Dalgarno, K.W., Woodburn, J., IEEE Trans. Biomed. Eng. 57, 1750 (2010).Google Scholar
61.Chung, H., Das, S., Mater. Sci. Eng., A 487, 251 (2008).Google Scholar
62.Leite, J.L., Salmoria, G.V., Paggi, R.A., Ahrens, C.H., Pouzada, A.S., Int. J. Mater. Prod. Technol. 39, 205 (2010).Google Scholar
63.Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T., Acta Biomater. 7, 530 (2011).CrossRefGoogle Scholar