Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T08:32:19.837Z Has data issue: false hasContentIssue false

Science and Techniques Using Pulsed Magnetic Fields

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In this article, we examine materials behavior in the magnetic field region from about 40 T to 500 T using pulsed magnet technology. Examples of materials science using two different pulsed magnet technologies are described in this article.

Semicontinuous Magnets

Since the late 1960s, the University of Amsterdam has operated a semicontinuous magnetic field installation that produces magnetic fields up to 40 T with typical time constants of about one second. The magnet coil is constructed from hard-drawn copper wire with a reinforcement cylinder of maraging steel positioned at roughly one third of the outer diameter. Before operation, the coil is cooled to 30 K by cold neon gas. The power for this installation is taken directly from a 10 kV connection to the public electricity grid. By means of a thyristor-based power control system, highly flexible field-time profiles can be realized: step-wise pulses can be generated with field levels constant within 10−4 during 100 ms; linearly increasing and decreasing fields as well as exponentially ripple-free decreasing fields are other examples of standard field-time profiles. Among the measuring techniques frequently used are magnetization, magneto-transport, quantum oscillations, relaxation phenomena, etc. Temperatures at which experiments can be performed range from 400 mK to room temperature. In the Netherlands, the Amsterdam High Field Facility has recently been combined with the High Magnetic Field Laboratory in Nijmegen, where static magnetic fields up to 30 T are produced in hybrid magnet systems, to form the Amsterdam-Nijmegen Magnet Laboratory (ANML). The high field research of ANML comprises semiconductors, magnetism in transition-metal compounds, heavy-fermion physics, superconductors, organic conductors, and magnetic separation. We present here a few selected topics.

Type
Materials Science in High Magnetic Fields
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gersdorf, R., de Boer, F.R., Wolfrat, J.C., Muller, F.A., and Roeland, L.W., High Field Magnetism, edited by Date, M. (North-Holland, Amsterdam, 1983) p. 277.CrossRefGoogle Scholar
2.Croat, J.J., Herbst, J.F., Lee, R.W., and Pinkerton, E.E., J. Appl. Phys. 55 (1984) p. 2078; M. Sagawa, S. Fujimura, M. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55 (1984) p. 2083; J. Herbst, J. Croat, E.E. Pinkerton, and W Yellon, Phys. Rev. B 29 (1984) p. 4176.CrossRefGoogle Scholar
3.Verhoef, R., thesis, Amsterdam (1990) p. 93; see also: R. Verhoef, J.J.M. Franse, A.A. Menovsky, R.J. Radwanski, Ji Song-quan, Yang Fu-ming, H.S. Li, and J.P. Gavigan, J. Phys. (Paris) 49 (1988) C8-565.Google Scholar
4.Verhoef, R., thesis, Amsterdam (1990) p. 110.Google Scholar
5.Tomiyama, F., Ono, M., Date, M., Yamagishi, A., Verhoef, R., de Boer, F.R., Franse, J.J.M., and Zhong, X.P., J. Appl. Phys. 69 (1991) p. 5539.CrossRefGoogle Scholar
6.Grewe, N. and Steglich, F., Handbook on the Physics and Chemistry of the Rare Earths 14, edited by Gschneider, K.A. Jr. and Eyring, L. (North-Holland, Amsterdam, 1991) p. 343.Google Scholar
7.Frings, P.H. and Franse, J.J.M., Phys. Rev. B 31 (1985) p. 4355.CrossRefGoogle Scholar
8.de Visser, A., de Boer, F.R., Menovsky, A.A., and Franse, J.J.M., Solid State Commun. 64 (1987) p. 727.CrossRefGoogle Scholar
9.Bakker, K., de Visser, A., Menovsky, A.A., and Franse, J.J.M., Phys. Rev. B 46 (1992) p. 544.CrossRefGoogle Scholar
10.Mignot, J.M., Flouquet, J., Haen, P., Lapierre, F., Puech, L., and Voiron, J., J. Magn. Magn. Mat. 76 & 77 (1988) p. 97.CrossRefGoogle Scholar
11.Gerber, A., Li, J.N., Tarnawski, Z., Franse, J.J.M., and Menovsky, A.A., Phys. Rev. B 49 (1993) p. 6047.CrossRefGoogle Scholar
12.Wolfrat, J.C., Menovsky, A.A., Roeland, L.W., ten Cate, H., Koster, C.H.A., and Mueller, E.M., J. Phys. F 15 (1985) p. 297.CrossRefGoogle Scholar
13.Miura, N. and Herlach, F.: In Strong and Ultrastrong Magnetic Fields and Their Applications, edited by Herlach, E., (Springer-Verlag, 1985) p. 247.CrossRefGoogle Scholar
14.Miura, N., Nojiri, H., Takamasu, T., Goto, T., Uchida, K., Katori, H.A., Haruyama, T., and Todo, S., Proc. 6th Int. Conf., Megagauss Field Generation and Related Topics (Nova Science Pub., to be published).Google Scholar
15.Nakao, K., Herlach, F., Goto, T., Takeyama, S., Sakakibara, T., and Miura, N., J. Phys. E B18 (1985) p. 1018.Google Scholar
16.Miura, N., Hiruma, K., Kido, G., and Chikazumi, S., Phys. Rev. Lett. 49 (1983) p. 589.Google Scholar
17.Ochimizu, H., Takamasu, T., Takeyama, S., Sasaki, S., and Miura, N., Phys. Rev. B 46 (1992) p. 1986.CrossRefGoogle Scholar
18.Kido, G., Miura, N., Nakamura, K., Miyajima, H., Nakao, K., and Chikazumi, S., in High Field Magnetism, edited by Date, M. (North-Holland. Amsterdam, New York, Oxford, 1983) p. 309.CrossRefGoogle Scholar
19.Osada, T., Miura, N., and Saito, G., Solid State Commun. 60 (1986) p. 441.CrossRefGoogle Scholar
20.Osada, T., Kagoshima, S., and Miura, N., Phys. Rev. Lett. 69 (1992) p. 1117.CrossRefGoogle Scholar
21.Nicholas, R.J., Barnes, D.J., Miura, N., Foxon, C.T., and Harris, J.J., J. Phys. Soc. Jpn. 62 (1993).CrossRefGoogle Scholar
22.Yokio, H., Takeyama, S., Miura, N., and Bauer, G., J. Phys. Soc. Jpn. 62 (1993).Google Scholar
23.Yokio, H., Takeyama, S., Miura, N., and Bauer, G., Phys. Rev. B 44 (1991) p. 6519.CrossRefGoogle Scholar
24.Kono, J., Miura, N., Takeyama, S., Yokio, H., Fujimori, N., Nishibayashi, Y., Nakajima, T., Tsuji, K., and Yamanaka, M., Phys. Status Solidi B 184 (1993) p. 178.Google Scholar
25.Miura, N., Yokio, H., Kono, J., and Sasaki, S., Solid St. Commun. 79 (1991) p. 1039.CrossRefGoogle Scholar
26.Kono, J., Takeyama, S., Yokio, H., Miura, N., Yamanaka, M., Shinohara, M., and Ikoma, K., to be published.Google Scholar
27.Miura, N., Iwasa, Y., Tarucha, S., and Okamoto, H., in Proc. Int. Conf. Phys. Semiconductors, edited by Chadi, J.D. and Harrison, W.A. (Springer-Verlag, 1985) p. 359.CrossRefGoogle Scholar
28.Lee, J.S., Miura, N., and Ando, T., J. Phys. Soc. Jpn. 59 (1990) p. 2254.CrossRefGoogle Scholar
29.Sasaki, S. and Miura, N., Phys. Status Solidi B 184 (1993) p. 111.Google Scholar