Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:40:15.608Z Has data issue: false hasContentIssue false

Scanning probes for new energy materials: Probing local structure and function

Published online by Cambridge University Press:  12 July 2012

Nina Balke
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; balken@ornl
Dawn Bonnell
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; balken@ornl
David S. Ginger
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; balken@ornl
Martijn Kemerink
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; balken@ornl
Get access

Abstract

The design and control of materials properties, often at the nanoscale, are the foundation of many new strategies for energy generation, storage, and efficiency. Scanning probe microscopy (SPM) has evolved into a very large toolbox for the characterization of properties spanning size scales from hundreds of microns to nanometers. Recent advances in SPM involve properties and size scales of precise relevance to energy-related materials, as presented in this issue. These advances are put into the general context of energy research, and the general principles are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.International Energy Outlook 2011 (DOE/EIA-0484, 2011); www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf.Google Scholar
2.Bonnell, D.A. Ed., Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications (Wiley, NY, 2000).Google Scholar
3.Meyer, E., Hug, H.J., Bennewitz, R., Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, 2004).Google Scholar
4.Groves, C., Reid, O.G., Ginger, D.S., Acc. Chem. Res. 43, 612 (2010).Google Scholar
5.Guo, Q., Ford, G.M., Hillhouse, H.W., Agrawal, R., Nano Lett. 9, 3060 (2009).Google Scholar
6.Guo, Q., Ford, G.M., Yang, W.C., Walker, B.C., Stach, E.A., Hillhouse, H.W., Agrawal, R., J. Am. Chem. Soc. 132, 17384 (2010).Google Scholar
7.Luque, A., Marti, A., Nozik, A.J., MRS Bull. 32, 236 (2007).Google Scholar
8.Grätzel, M., MRS Bull. 30, 23 (2005).Google Scholar
9.Davis, J.J., Morgan, D.A., Wrathmell, C.L., Axford, D.N., Zhao, J., Wang, N., J. Mater. Chem. 15, 2160 (2005).Google Scholar
10.Rao, A.M., Ji, X., Tritt, T.M., MRS Bull. 31, 218 (2006).Google Scholar
11.Osterloh, F.E., Parkinson, B.A., MRS Bull. 36, 17 (2011).Google Scholar
12.Atwater, H., MRS Bull. 36, 57 (2011).Google Scholar
13.Kim, M.G., Cho, J., Adv. Funct. Mater. 19, 1497 (2009).Google Scholar
14.Simon, P., Gogotsi, Y., Nat. Mater. 7, 845 (2008).Google Scholar
15.Haruta, M., Date, M., Appl. Catal., A 222, 427 (2001).Google Scholar
16.Lanyi, S., Hruskovic, M., J. Phys. D-Appl. Phys. 36, 598 (2003).Google Scholar
17.Sadewasser, S., Abou-Ras, D., Azulay, D., Baier, R., Balberg, I., Cahen, D., Cohen, S., Gartsman, K., Ganesan, K., Kavalakkatt, J., Li, W., Millo, O., Rissom, Th., Rosenwaks, Y., Schock, H.-W., Schwarzman, A., Unold, T., Thin Solid Films 519, 7341 (2011).Google Scholar
18.Freitag, M., Kalinin, S., Bonnell, D., Johnson, A.T., Phys. Rev. Lett. 89, 216801 (2002).Google Scholar
19.Bonnell, D., ACS Nano 2, 1753 (2008).Google Scholar
20.Brukman, M.J., Bonnell, D.A., Phys. Today 61, 36 (2008).Google Scholar
21.Wiesendanger, R., Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, UK, 1994).Google Scholar
22.Nonnenmacher, M., O’Boyle, M.P., Wickramasinghe, H.K., Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
23.Martin, Y., Abraham, D.W., Wickramasinghe, H.K., Appl. Phys. Lett. 52, 1103 (1988).Google Scholar
24.Stern, J.E., Terris, B.D., Mamin, H.J., Rugar, D., Appl. Phys. Lett. 53, 2717 (1988).Google Scholar
25.Sadewasser, S., Glatzel, Th., Eds., Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces (Springer, NY, 2012).CrossRefGoogle Scholar
26.Kitamura, S., Suzukia, K., Iwatsukia, M., Mooney, C.B., Appl. Surf. Sci. 157, 222 (2000).Google Scholar
27.Enevoldsen, G.H., Glatzel, T., Christensen, M.C., Lauritsen, J.V., Besenbacher, F., Phys. Rev. Lett. 100, 236104 (2008).Google Scholar
28.Gruverman, A., Auciello, O., Tokumoto, H., J. Vac. Sci. Technol., B 14, 602 (1996).Google Scholar
29.Buscaglia, M.T., Buscaglia, V., Viviani, M., Petzelt, J., Savinov, M., Mitoseriu, L., Testino, A., Nanni, P., Harnegea, C., Zhao, Z., Nygren, M., Nanotechnology 15, 1113 (2004).Google Scholar
30.Gruverman, A., Auciello, O., Ramesh, R., Tokumoto, H., Nanotechnology 8, A38 (1997).Google Scholar
31.Noda, K., Ishida, K., Kubono, A., Horiuchi, T., Yamada, H., Matsushige, K.Jpn. J. Appl. Phys., Part 1 40, 4361 (2001).CrossRefGoogle Scholar
32.Rodriguez, B.J., Jesse, S., Kalinin, S.V., Kim, J., Ducharme, S., Fridkin, V.M.Appl. Phys. Lett. 90, 122904 (1007).CrossRefGoogle Scholar
33.Kalinin, S.V., Rodriguez, B.J., Jesse, S., Thundat, T., Gruverman, A., Appl. Phys. Lett. 87, 053901 (2005).Google Scholar
34.Rodriguez, B.J., Callahan, C., Kalinin, S.V., Proksch, R., Nanotechnology 18, 475504 (2007).Google Scholar
35.Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P., Rodriguez, B.J., Nanotechnology 18, 435503 (2007).Google Scholar
36.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., Kalinin, S.V., Nano Lett. 10, 3420 (2010).Google Scholar
37.Balke, N., Jesse, S., Morozovska, A.N., Eliseev, E., Chung, D.W., Kim, Y., Adamczyk, L., Garcia, R.E., Dudney, N.J., Kalinin, S.V., Nat. Nanotechnol. 5, 749 (2010).Google Scholar
38.Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S., Nat. Chem. 3, 707 (2011).Google Scholar
39.Nikiforov, M., Schneider, S., Park, T.-H., Milde, P., Zerweck, U., Loppacher, C., Eng, L., Therien, M.J., Engheta, N., Bonnell, D., J. Appl. Phys. 106, 114307 (2009).Google Scholar
40.Shao, R., Kalinin, S., Bonnell, D.A., Appl. Phys. Lett. 82, 1869 (2003).Google Scholar
41.Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I., Science 317 100 (2007).CrossRefGoogle Scholar
42.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., Nat. Nanotechnol. 3, 31 (2008).Google Scholar
43.Rice, A.H., Giridharagopal, R., Zheng, S.X., Ohuchi, F.S., Ginger, D.S., Luscombe, C.K., ACS Nano 5 (4), 3132 (2011).Google Scholar
44.Martín-González, M., Snyder, G.J., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M., Nano Lett. 3 (7), 973 (2003).Google Scholar