Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T03:19:40.305Z Has data issue: false hasContentIssue false

Scanning Probe Microscopy in Materials Science

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This brief article introduces the July 2004 issue of MRS Bulletin, focusing on Scanning Probe Microscopy in Materials Science.Those application areas of scanning probe microscopy (SPM) in which the most impact has been made in recent years are covered in the articles in this theme.They include polymers and semiconductors, where scanning force microscopy is now virtually a standard characterization method; magnetism, where magnetic force microscopy has served both as a routine analytical approach and a method for fundamental studies;tribology, where friction force microscopy has opened entirely new vistas of investigation;biological materials, where atomic force microscopy in an aqueous environment allows biosystems to be imaged and measured in a native (or near-native) state;and nanostructured materials, where SPM has often been the only approach capable of elucidating nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

References

1Meyer, E., Hug, H.-J., and Bennewitz, R., Scanning Probe Microscopy: The Lab on a Tip (Springer-Verlag, Berlin, 2003).Google Scholar
2Bhushan, B., ed., Springer Handbook on Nano-technology (Springer-Verlag, Berlin, 2003).Google Scholar
3Binnig, G. and Rohrer, H., Helv. Phys. Acta 55 (1982) p.726.Google Scholar
4Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., Phys. Rev. Lett. 50 (1983) p.120.CrossRefGoogle Scholar
5Binnig, G., Quate, C.F., and Gerber, Ch., Phys. Rev. Lett. 56 (1986) p.930.CrossRefGoogle Scholar
6Giessibl, F.J., Science 267 (1995) p.1451.CrossRefGoogle Scholar
7Bammerlin, M., Lüthi, R., Meyer, E., Baratoff, A., , J., Guggisberg, M., Gerber, Ch., Howald, L., and Güntherodt, H.-J., Probe Microsc. 1 (1997) p.3.Google Scholar
8Barth, C. and Reichling, M., Nature 414 (2001) p.54.CrossRefGoogle Scholar
9Frisbie, C.D., Rozsnyai, L.F., Noy, A., Wrighton, M.S., and Lieber, C.M., Science 265 (1994) p.2071.CrossRefGoogle Scholar
10Hähner, G., Marti, A., and Spencer, N.D., Tribol. Lett. 3 (1997) p.359.CrossRefGoogle Scholar
11Feldman, K., Tervoort, T., Smith, P., and Spencer, N.D., Langmuir 14 (1998) p.372.CrossRefGoogle Scholar
12Lantz, M.A., Hug, H.J., Schendel, P.J.A. van, Hoffmann, R., Kappenberger, P., Martin, S., Baratoff, A., and Güntherodt, H.-J., Science 291 (2001) p.2580.CrossRefGoogle Scholar
13Mate, M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59 (1987) p.1942.CrossRefGoogle Scholar
14Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, Ch., Bammerlin, M., Meyer, E., and Güntherodt., H.-J., Phys. Rev. Lett. 84 (2000) p.1172.CrossRefGoogle Scholar
15Socoliuc, A., Bennewitz, R., Gyalog, T., Loppacher, Ch., Bammerlin, M., Meyer, E., and Güntherodt, H.-J., Phys. Rev. Lett. 92, 134301 (2004).CrossRefGoogle Scholar