Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:16:36.942Z Has data issue: false hasContentIssue false

Rubber Stamping for Plastic Electronics and Fiber Optics

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Microcontact printing (μCP) is a low-cost technique for rubber stamping that combines the high spatial resolution of sophisticated forms of photolithography with capabilities (e.g., single-step patterning of large areas and nonplanar surfaces) that are not present in other approaches. μCP will be useful for applications where established methods are ineffective. Two areas are particularly promising: (1) plastic electronics, where the chemical incompatibility of the constituent materials with common photoresists and developers can preclude the use of photolithography, and where μCP with rotating cylindrical stamps forms an excellent match with the type of reel-to-reel processing that is envisioned for these systems; and (2) new classes of optical-fiber and microcapillarybased devices, where μCP allows highresolution (∼0.2 μm) circuits, photomasks, and actuators to be printed directly on the highly curved surfaces of cylinders with submillimeter diameters. This article describes some highlights of our work in these and related areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kumar, A. and Whitesides, G.M., Appl. Phys. Lett. 63 (1993) p. 2002.CrossRefGoogle Scholar
2.Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., and Drzaic, P., Proc. Natl. Acad. Sci. USA 98 (2001) p.4835.CrossRefGoogle Scholar
3.Jackman, R.J., Wilbur, J.L., and Whitesides, G.M., Science 269 (1995) p.664.CrossRefGoogle Scholar
4.Rogers, J.A., Jackman, R.J., and Whitesides, G.M., Adv. Mater. 9 (6) (1997) p.475.CrossRefGoogle Scholar
5.Rogers, J.A., Bao, Z., and Makhija, A., Adv. Mater. 11 (1999) p.741.3.0.CO;2-L>CrossRefGoogle Scholar
6.Rogers, J.A., Bao, Z., Dodabalapur, A., and Makhija, A., IEEE Electron Device Lett. 21 (2000) p.100.CrossRefGoogle Scholar
7.Rogers, J.A., Bao, Z., Dodabalapur, A., Schueller, O.J.A., and Whitesides, G.M., Synth. Met. 115 (2000) p.5; J.A. Rogers, J. Tate, W. Li, Z. Bao, and A. Dodabalapur, Isr. J. Chem. 40 (2000) p.139.CrossRefGoogle Scholar
8.Xia, Y., Qin, D., and Whitesides, G.M., Adv. Mater. 8 (1996) p.1015.CrossRefGoogle Scholar
9.Rogers, J.A., Jackman, R.J., Wagener, J.L., Vengsarkar, A.M., and Whitesides, G.M., Appl. Phys. Lett. 70 (1997) p.7.CrossRefGoogle Scholar
10.Jackman, R.J., Rogers, J.A., and Whitesides, G.M., IEEE Trans. Magn. 33 (1997) p.2501; J.A. Rogers, R.J. Jackman, and G.M. Whitesides, JMEMS 6 (1997) p.184.CrossRefGoogle Scholar
11.Rogers, J.A., Jackman, R.J., Whitesides, G.M., Olson, D.L., and Sweedler, J.V., Appl. Phys. Lett. 70 (1997) p.2464.CrossRefGoogle Scholar
12.Rogers, J.A., Science 291 (2001) p.1502.CrossRefGoogle Scholar
13.Comiskey, B., Albert, J.D., Yoshizawa, H., and Jacobson, J., Nature 394 (1998) p.253.CrossRefGoogle Scholar
14.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E.P., Science 290 (2000) p.2123.CrossRefGoogle Scholar
15.Gelinck, G.H., Geuns, T.C.T., and de Leeuw, D.M., Appl. Phys. Lett. 77 (2000) p.1487.CrossRefGoogle Scholar
16.Tate, J., Rogers, J.A., Jones, C.D.W., Li, W., Bao, Z., Murphy, D.W., Slusher, R.E., Dodabalapur, A., Katz, H.E., and Lovinger, A.J., Langmuir 16 (2000) p.6054.CrossRefGoogle Scholar
17.Xia, Y., Venkateswaran, N., Qin, D., Tien, J., and Whitesides, G.M., Langmuir 14 (1998) p.363.CrossRefGoogle Scholar
18.Dubois, L.H. and Nuzzo, R.G., Annu. Rev. Phys. Chem. 43 (1992) p.437.CrossRefGoogle Scholar
19.Xia, Y., Kim, E., and Whitesides, G.M., J. Electrochem. Soc. 143 (1996) p.1070.CrossRefGoogle Scholar
20.Jackman, R.J., Brittain, S.T., Adams, A., Prentiss, M.G., and Whitesides, G.M., Science 280 (1998) p.2089.CrossRefGoogle Scholar
21.Wu, H., Brittain, S.T., Anderson, J.R., Grzybowski, B., Whitesides, S., and Whitesides, G.M., J. Am. Chem. Soc. 122 (2000) p.12691.CrossRefGoogle Scholar
22.Rogers, J.A., Eggleton, B.J., Jackman, R.J., Kowach, G.R., and Strasser, T.A., Opt. Lett. 24 (1999) p.1328.CrossRefGoogle Scholar
23.Eggleton, B.J., Rogers, J.A., Westbrook, P.S., and Strasser, T.A., IEEE Photon. Techn. Lett. 11 (1999) p.854; J.A. Rogers, B.J. Eggleton, J.R. Pedrazzani, and T.A. Strasser, Appl. Phys. Lett. 74 (1999) p.3131.CrossRefGoogle Scholar
24.Rogers, J.A., Kuo, P., Ahuja, A., Eggleton, B.J., and Jackman, R.J., Appl. Opt. 39 (2000) p.5109.CrossRefGoogle Scholar
25.Salamon, T.R., Rogers, J.A., and Eggleton, B.J., Sens. Actuators, A (submitted for publication).Google Scholar
26.Rogers, J.A., Eggleton, B.J., and Strasser, T.A. (unpublished manuscript).Google Scholar
27.Nielsen, T., Eggleton, B.J., Rogers, J.A., Westbrook, P.S., and Strasser, T.A., IEEE Photon. Techn. Lett. 12 (2000) p.173.CrossRefGoogle Scholar
28.Eggleton, B.J., Mikkelsen, B., Raybon, G., Ahuja, A., Rogers, J.A., Westbrook, P.S., Nielsen, T.N., Stulz, S., and Dreyer, K., IEEE Photon. Techn. Lett. 12 (2000) p.1022.CrossRefGoogle Scholar
29.Xia, Y., Rogers, J.A., Paul, K.E., and Whitesides, G.M., Chem. Rev. 99 (7) (1999) p.1823.CrossRefGoogle Scholar