Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:37:52.160Z Has data issue: false hasContentIssue false

Responsive surfaces for biomedical applications

Published online by Cambridge University Press:  31 January 2011

K. G. Neoh
Affiliation:
Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260; e-mail [email protected].
E. T. Kang
Affiliation:
Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260; e-mail [email protected].
Get access

Abstract

Much of the interaction of a material with its environment is governed by its surface, and modulation of the material's surface characteristics can vastly broaden its range of application. This review focuses on the tailoring of surfaces of materials to achieve specific changes in their responses to external stimuli to enhance their prospects for applications in the biomedical field. Combining the inherent properties of different classes of materials such as polymers, metals, mesoporous materials, and magnetic nanoparticles with a responsive surface presents unique opportunities. Applications include surface-modified filters for the effective adsorption and separation of biomolecules, materials for the promotion of cell adhesion or detachment for cell sheet engineering and regenerative medicine, actuators, or valves, and vehicles for the controlled and targeted delivery of therapeutic agents. The commonly used external stimuli are heat, pH, and light, and these, as well as electrical stimulation used in conjunction with conducting polymers, will be addressed in this review. Progress in the field of responsive surfaces has been rapid, and continuing research can be expected to result in more innovative and exciting developments. Nevertheless, much work remains to be done to meet the challenges in the translation of these systems from the laboratory to clinical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sun, A., Lahann, J., Soft Matter 5, 1555 (2009).CrossRefGoogle Scholar
2.Mano, J.F., Adv. Eng. Mater. 10, 515 (2008).CrossRefGoogle Scholar
3.Tokarev, I., Minko, S., Soft Matter 5, 511 (2009).CrossRefGoogle Scholar
4.Xu, F.J., Neoh, K.G., Kang, E.T., Prog. Polym. Sci. 34, 719 (2009).CrossRefGoogle Scholar
5.Kumar, A., Srivastava, A., Galaev, I.Y., Mattiasson, B., Prog. Polym. Sci. 32, 1205 (2007).CrossRefGoogle Scholar
6.Yoshida, M., Langer, R., Lendlein, A., Lahann, J., J. Macromol. Sci., Polym. Rev. 46, 347 (2006).CrossRefGoogle Scholar
7.Nagase, K., Kobayashi, J., Okano, T., J. R. Soc. Interface 6, S293 (2009).CrossRefGoogle Scholar
8.Ganta, S., Devalapally, H., Shahiwala, A., Amiji, M., J. Controlled Release 126, 187 (2008).CrossRefGoogle Scholar
9.Ahn, S.K., Kasi, R.M., Kim, S.C., Sharma, N., Zhou, Y.X., Soft Matter 4, 1151 (2008).CrossRefGoogle Scholar
10.Peppas, N.A., MRS Bull. 31, 888 (2006).CrossRefGoogle Scholar
11.de las Heras Alarcón, C., Pennadam, S., Alexander, C., Chem. Soc. Rev. 34, 276 (2005).CrossRefGoogle Scholar
12.Hoffman, A.S., in Biomaterials Science: An Introduction to Materials in Medicine, Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Eds. (Elsevier Academic Press, San Diego, CA, 2004), p. 107.Google Scholar
13.Wadajkar, A.S., Koppolu, B., Rahimi, M., Nguyen, K.T., J. Nanopart. Res. 11, 1375 (2009).CrossRefGoogle Scholar
14.Barbosa, J.S., Costa, R.R., Testera, A.M., Alonso, M., Rodríguez-Cabello, J.C., Mano, J.F., Nanoscale Res. Lett. 4, 1247 (2009).CrossRefGoogle Scholar
15.Chilkoti, A., Christensen, T., MacKay, J.A., Curr. Opin. Chem. Biol. 10, 652 (2006).CrossRefGoogle Scholar
16.Meyer, D.E., Chilkoti, A., Nat. Biotechnol. 17, 1112 (1999).CrossRefGoogle Scholar
17.Gil, E.S., Hudson, S.M., Prog. Polym. Sci. 29, 1173 (2004).CrossRefGoogle Scholar
18.Dai, S., Ravi, P., Tam, K.C., Soft Matter 5, 2513 (2009).CrossRefGoogle Scholar
19.Gandhi, M.R., Murray, P., Spinks, G.M., Wallace, G.G., Synth. Met. 73, 247 (1995).CrossRefGoogle Scholar
20.Guimard, N.K., Gomez, N., Schmidt, C.E., Prog. Polym. Sci. 32, 876 (2007).CrossRefGoogle Scholar
21.Ateh, D.D., Navsaria, H.A., Vadgama, P., J.R. Soc. Interface 3, 741 (2006).CrossRefGoogle Scholar
22.George, P.M., LaVan, D.A., Burdick, J.A., Chen, C.Y., Liang, E., Langer, R., Adv. Mater. 18, 577 (2006).CrossRefGoogle Scholar
23.Yamada, N., Okano, T., Sakai, H., Karikusa, F., Sawasaki, Y., Sakurai, Y., Makromol. Chem. Rapid Commun. 11, 571 (1990).CrossRefGoogle Scholar
24.Okano, T., Yamada, N., Sakai, H., Sakurai, Y., J. Biomed. Mater. Res. 27, 1243 (1993).CrossRefGoogle Scholar
25.Hatakeyama, H., Kikuchia, A., Yamatoa, M., Okano, T., Biomaterials 27, 5069 (2006).CrossRefGoogle Scholar
26.Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., Okano, T., Adv. Mater. 10, 3034 (2008).CrossRefGoogle Scholar
27.Tsuda, Y., Kikuchi, A., Yamato, M., Chen, G., Okano, T., Biochem. Biophys. Res. Commun. 348, 937 (2006).CrossRefGoogle Scholar
28.Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., Okano, T., Biomaterials 28, 5033 (2007).CrossRefGoogle Scholar
29.Vertommen, M.A.M.E., Cornelissen, H.L., Dietz, C.H.J.T., Hoogenboom, R., Kemmere, M.F., Keurentjes, J.T.F., J. Membr. Sci. 322, 243 (2008).CrossRefGoogle Scholar
30.Ruiz, J.C., Alvarez-Lorenzo, C., Taboada, P., Burlilo, G., Buclo, E., De Prijek, K., Nells, H.J., Coenye, T., Conchelro, A., Eur J. Pharm. Biopharm. 70, 467 (2008).CrossRefGoogle Scholar
31.Chu, L.Y., LI, Y., Zhu, J.H., Wang, H.D., Liang, Y.J., J. Controlled Release 97 43 (2004).CrossRefGoogle Scholar
32.LI, Y.L., Neoh, K.G., Kang, E.T., J. Biomed. Mater. Res. 73A, 171 (2005).CrossRefGoogle Scholar
33.Haugland, R.P., Bhalghat, M.K., In Avidin-Biotin Interactions: Methods and Applications, McMahon, R.J., Ed. (Humana Press, Totowa, NJ, 2008), p. 1.Google Scholar
34.Naujoks, N., Stemmer, A., Colloids Surf. A 249, 69 (2004).CrossRefGoogle Scholar
35.Thompson, B.C., Moulton, S.E., Ding, J., Richardson, R., Cameron., A., O'Leary, S., Wallace, G.G., Clark, G.M., J. Controlled Release 116, 285 (2006).CrossRefGoogle Scholar
36.Richardson, R.T., Thompson, B., Moulton, S., Newbold, C., Lum, M.G., Cameron, A., Wallace, G.G., Kapsa, R., Clark, G., O'Leary, S., Biomaterials 28, 513 (2007).CrossRefGoogle Scholar
37.Richardson, R.T., Wise, A.K., Thompson, B.C., Flynn, B.O., Atkinson, P.J., Fretwell, N.J., Falion, J.B., Wallace, G.G., Shepherd, R.K., Clark, G.M., O'Leary, S., Biomaterials 30, 2614 (2009).CrossRefGoogle Scholar
38.Evans, A.J., Thompson, B.C., Wallace, G.G., Miliárd, R., O'Leary, S., Clark, G.M., Shepherd, R.K., Richardson, R.T., J. Biomed. Mater. Res. 91A, 241 (2009)CrossRefGoogle Scholar
39.Abldlan, M.R., Kim, D.H., Martin, D.C., Adv. Mater. 18, 405 (2006).Google Scholar
40.Jager, E.W.H., Inganas, O., Lundstrom, I., Science, 288, 2335 (2000).CrossRefGoogle Scholar
41.Cunllffe, D., de las Heras Alarcón, C., Peters, V., Smith, J.R., Alexander, C.Langmuir 19, 2888 (2003).CrossRefGoogle Scholar
42. FXu, J., Zhong, S.P., Yung, L.Y.L., Kang, E.T., Neoh, K.G., Biomacromolecules 5, 2392 (2004).CrossRefGoogle Scholar
43.Nagase, K., Kobayashl, J., Klkuchl, A., Aklyama, Y., Kanazawa, H., Okano, T., Langmuir 24, 511 (2008).CrossRefGoogle Scholar
44.Kanazawa, H., Nlshlkawa, M., Mlzutanl, A., Sakamoto, C., Monta-Murase, Y., Nagata, Y., Klkuchl, A., Okano, T., J. Chromatogr. 1191, 157 (2008).CrossRefGoogle Scholar
45.Nagase, K., Kobayashl, J., Klkuchl, A., Aklyama, Y., Kanazawa, H., Okano, T., Langmuir 23, 9409 (2007).CrossRefGoogle Scholar
46.Ernst, O., Lieske, A., Jager, M., Lankenau, A., Duschl, C., Lab Chip 7, 1322 (2007)CrossRefGoogle Scholar
47.Edahlro, J.I., Sumaru, K., Tada, Y., Ohi, K., Takagl, T., Kameda, M., Shlnbo, T., Kanamorl, T., Yoshlml, Y., Biomacromolecules 6, 970 (2005).CrossRefGoogle Scholar
48.Frey, W., Meyer, D.E., Chllkotl, A., Langmuir 19, 1641 (2003).CrossRefGoogle Scholar
49.Nakanlshl, J., Klkuchl, Y., Takarada, T., Nakayama, H., Yamaguchl, K., Maeda, M., Anal. Chim. Acta 578, 100 (2006).Google Scholar
50.Decher, G., Science 277, 1232 (1997).CrossRefGoogle Scholar
51.Serpe, M.J., Yarmey, K.A., CNolan, M., Lyon, L.A., Biomacromolecules 5, 408 (2005).CrossRefGoogle Scholar
52.Nolan, C.M., Serpe, M.J., Lyon, L.A., Biomacromolecules 5, 1940 (2004).CrossRefGoogle Scholar
53.Kharlampleva, E., Kozlovskaya, V., Sukhishvili, S.A., Adv. Mater. 21, 3053 (2009).CrossRefGoogle Scholar
54.Kharlampleva, E., Erel-Unal, I., Sukhishvili, S.A., Langmuir 23, 175 (2007).CrossRefGoogle Scholar
55.Vallet-Regìl, M., Balas, F., Arcos, D., Angew. Chem. Int. Ed. 46, 7548 (2007).CrossRefGoogle Scholar
56.Slowing, I.I., Vivero-Escoto, J.L., Wu, C.W., Lin, V.S.Y, Adv. Drug Deliv. Rev. 60, 1278 (2008).CrossRefGoogle Scholar
57.Yang, Q., Wang, S., Fan, P., Wang, L., Di, Y., Lin, K., Xiao, F.S., Chem. Mater. 17 5999 (2005).CrossRefGoogle Scholar
58.Gruenhagen, J.A., Lai, C.Y., Radu, D.R., Lin, V.S.Y., Yeung, E.S., Appl. Spectrosc. 59, 424 (2005).CrossRefGoogle Scholar
59.Lal, C.Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., Lin, V.S.Y., J. Am. Chem. Soc. 125, 4451 (2003).Google Scholar
60.Zhang, J., Misra, R.D.K., Acta Biomater. 3, 838 (2007).CrossRefGoogle Scholar
61.Etrych, T., Jelínková, M., Ríhová, B., Ulbrich, K.. J. Controlled Release 73, 89 (2001).CrossRefGoogle Scholar
62.Chen, S., LI, Y., Guo, C., Wang, J., Ma, J.H., Liang, X.F., Yang, L.R., Llu, H.Z., Langmuir 23, 12669 (2007).CrossRefGoogle ScholarPubMed