Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:49:55.452Z Has data issue: false hasContentIssue false

Refractory Metal Nitride Encapsulation for Copper Wiring

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recent interest in copper-based metallization for ultra fast logic devices has stimulated extensive studies on thermal stability issues, as well as the search for novel deposition and etching processes. In copper wiring technology, thermal stability problems include: (1) rapid diffusion of copper into dielectric substrates, (2) low-temperature reaction with most near-noble metals and their silicides, (3) the susceptibility of copper to oxidation, (4) poor adhesion characteristics of copper on most dielectric materials, and (5) thermal-stress-induced void formation and cracking. The basic issues have been summarized in a recent review.

When copper is in contact with a silicon substrate, copper can diffuse into active regions of devices where it becomes a recombination-generation center. In addition, copper forms the silicide Cu3Si by reacting with the substrate at temperatures less than 200°C. After the formation of the Cu3Si phase, the underlying silicon in the Cu3Si/Si structure is readily oxidized even at room temperature. In the case of copper in contact with silicon dioxide under bias thermal stress (BTS), copper is found at the SiO2/Si interface under a positive electric field. Copper diffusion in doped glass, e.g., phosphosilicate glass and silicon nitride films, is a factor at temperatures below 400°C.

Type
Copper Metallization
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Li, J., Shacham-Diamand, Y., and Mayer, J.W., Mater. Sci. Rep. 9 (1992) p. 1.CrossRefGoogle Scholar
2.Hong, S.Q., Comrie, C., Russell, S.W., and Mayer, J.W., J. Appl. Phys. 70 (1991) p. 3655.CrossRefGoogle Scholar
3.Harper, J.M.E., Charai, A., Stolt, L.. d'Heurle, F.M., and Fryer, P.M., Appl. Phys. Lett. 56 (1990) p. 2519.CrossRefGoogle Scholar
4.Li, J., Mayer, J.W., Matienzo, L.J., and Emmi, F., Mater. Chem. Phys. 32 (1992) p. 390.CrossRefGoogle Scholar
5.Shacham-Diamand, Y., Dedhia, A., Hoffstetter, D., and Oldham, W.G., Proceedings of 8th VLSI Multilevel Interconnection Conference (1991) p. 109.Google Scholar
6.Miyazaki, H., Kojima, H., Hiraiwa, A., and Homma, Y., J. Electrochem. Soc. 139 (1992) p. 3264.CrossRefGoogle Scholar
7.Li, J., Strane, J.W., Russell, S.W., Hong, S.Q., Mayer, J.W., Marais, T.K., Theron, C.C., and Pretorius, R., J. Appl. Phys. 72 (1992) p. 2810.CrossRefGoogle Scholar
8.Olowolafe, J.O., Li, J., and Mayer, J.W., J. Appl. Phys. 68 (1990) p. 6207.CrossRefGoogle Scholar
9.Li, J. and Mayer, J.W., Mater. Chem. Phys. 32 (1992) p. 1.CrossRefGoogle Scholar
10.Young, F.W. Jr., Cathcart, J.V., and Gwathmey, A.T., Acta Metall. 4 (1956) p. 145.CrossRefGoogle Scholar
11.Li, J. and Shacham-Diamand, Y., J. Electrochem. Soc. 139 (1992) p. L37.CrossRefGoogle Scholar
12.Campbell, W.E. and Thomas, U.B., Trans. Electrochem. Soc. 91 (1947) p. 623.CrossRefGoogle Scholar
13.Li, J., Mayer, J.W., and Colgan, E.G., J. Appl. Phys. 70 (1991) p. 2820.CrossRefGoogle Scholar
14.Apblett, C. and Ficalora, P.J., J. Appl. Phys. 69 (1991) p. 4431.CrossRefGoogle Scholar
15.Ho, P., in Principles of Electronic Packaging, edited by Seraphim, D.P., Lasky, R., and Li, C-Y. (McGraw-Hill, New York, 1989) p. 809.Google Scholar
16.Flinn, P.A., J. Mater. Res. 6 (1991) p. 1498.CrossRefGoogle Scholar
17.Borgesen, P., Lee, J.K., Gleixner, R., and Li, C-Y., Appl. Phys. Lett. 60 (1992) p. 1706.CrossRefGoogle Scholar
18.Catania, P., Doyle, J.P., and Cuomo, J.J., J. Vac. Sci. Tech. A 10 (1992) p. 3318.CrossRefGoogle Scholar
19.Gardner, D.S., Onuki, J., Kudoo, K., and Misawa, Y., Proceedings of 8th VLSI Multilevel Interconnections Conference (1991) p. 99.Google Scholar
20.Miller, R.J. and Gangulee, A., Thin Solid Films 69 (1980) p. 379.CrossRefGoogle Scholar
21.Awaya, N. and Arita, Y., J. Electron. Mater. 21 (1992) p. 959.CrossRefGoogle Scholar
22.Arcot, B., Murarka, S.P., Clevenger, L.A., Harper, J.M.E., and Cabral, C. Jr., Proceedings of 9th VLSI Multilevel Interconnection Conference (1992) p. 301.Google Scholar
23.Small, M.B. and Pearson, D.J., IBM J. Res. Dev. 34 (1990) p. 858.CrossRefGoogle Scholar
24.Rogers, B., Bothra, S., Kellam, M., and Ray, M., Proceedings of 8th VLSI Multilevel Interconnection Conference (1991) p. 137.Google Scholar
25.Hoshino, K., Yagi, H., and Tsuchikawa, H., Proceedings of 6th VLSI Multilevel Interconnection Conference (1991) p. 153.Google Scholar
26.Li, J., Mayer, J.W., Shacham-Diamand, Y., and Colgan, E.G., Appl. Phys. Lett. 60 (1992) p. 2983.CrossRefGoogle Scholar
27.Wang, S.Q., PhD thesis, Cornell University, 1989.Google Scholar
28.Wang, S.Q. and Mayer, J.W., J. Appl. Phys. 67 (1990) p. 2932.CrossRefGoogle Scholar
29.Li, J., Chapman, P., Goodwin, F., Shacham-Diamand, Y., and Mayer, J.W., in Advanced Metallization for ULSI Applications 1992, edited by Cale, T.S. and Pintchovski, F.S. (Adv. Metallization ULSI Appl. Proc, Pittsburgh, PA, 1993) p. 75.Google Scholar
30.Jpn. Technol. Highlights 3 (10) (1992).Google Scholar